Searching for Dark Matter with a Superconducting Qubit

Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-04, Vol.126 (14), p.141302-141302, Article 141302
Hauptverfasser: Dixit, Akash V, Chakram, Srivatsan, He, Kevin, Agrawal, Ankur, Naik, Ravi K, Schuster, David I, Chou, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141302
container_issue 14
container_start_page 141302
container_title Physical review letters
container_volume 126
creator Dixit, Akash V
Chakram, Srivatsan
He, Kevin
Agrawal, Ankur
Naik, Ravi K
Schuster, David I
Chou, Aaron
description Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^{-15} in a band around 6.011 GHz (24.86  μeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter.
doi_str_mv 10.1103/PhysRevLett.126.141302
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518216853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d5b635bba07e6fbf3b0bd30d296591bc4e145716abd1af7d7a2cd65d6b18d0973</originalsourceid><addsrcrecordid>eNpd0MlOwzAQgGELgaAUXqGK4MIlZSZO7OSIyioVsRTOlrfQQJsU2wH17UlpQYiTL9-Mxj8hA4QhItDT--nSP9qPsQ1hiAkbYooUki3SQ-BFzBHTbdIDoBgXAHyP7Hv_CgAdzXfJHqV5gSnNe4RNrHR6WtUvUdm46Fy6t-hWhmBd9FmFaSSjSbuwTje1aXVYsYdWVeGA7JRy5u3h5u2T58uLp9F1PL67uhmdjWOdMh5ikylGM6UkcMtKVVIFylAwScGyApVOLaYZRyaVQVlyw2WiDcsMU5gbKDjtk6P13saHSnhdBaun3TG11UEg5xlg0aGTNVq45r21Poh55bWdzWRtm9aLJMM8QZZntKPH_-hr07q6-8K3SjEHZJ1ia6Vd472zpVi4ai7dUiCIVX7xJ7_omop1_m5wsFnfqrk1v2M_vekXr-uB6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518418016</pqid></control><display><type>article</type><title>Searching for Dark Matter with a Superconducting Qubit</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dixit, Akash V ; Chakram, Srivatsan ; He, Kevin ; Agrawal, Ankur ; Naik, Ravi K ; Schuster, David I ; Chou, Aaron</creator><creatorcontrib>Dixit, Akash V ; Chakram, Srivatsan ; He, Kevin ; Agrawal, Ankur ; Naik, Ravi K ; Schuster, David I ; Chou, Aaron</creatorcontrib><description>Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^{-15} in a band around 6.011 GHz (24.86  μeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.141302</identifier><identifier>PMID: 33891438</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Dark matter ; Electromagnetic fields ; Linear amplifiers ; Markov chains ; Microwave frequencies ; Noise levels ; Noise reduction ; Photons ; Quantum nondemolition ; Quantum sensors ; Qubits (quantum computing) ; Query languages ; Searching ; Superconductivity</subject><ispartof>Physical review letters, 2021-04, Vol.126 (14), p.141302-141302, Article 141302</ispartof><rights>Copyright American Physical Society Apr 9, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d5b635bba07e6fbf3b0bd30d296591bc4e145716abd1af7d7a2cd65d6b18d0973</citedby><cites>FETCH-LOGICAL-c467t-d5b635bba07e6fbf3b0bd30d296591bc4e145716abd1af7d7a2cd65d6b18d0973</cites><orcidid>0000-0002-4816-9740 ; 0000-0003-2337-7321 ; 0000-0001-6699-7198 ; 0000-0003-2304-3436 ; 0000000323377321 ; 0000000166997198 ; 0000000248169740 ; 0000000323043436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33891438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1775019$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixit, Akash V</creatorcontrib><creatorcontrib>Chakram, Srivatsan</creatorcontrib><creatorcontrib>He, Kevin</creatorcontrib><creatorcontrib>Agrawal, Ankur</creatorcontrib><creatorcontrib>Naik, Ravi K</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><creatorcontrib>Chou, Aaron</creatorcontrib><title>Searching for Dark Matter with a Superconducting Qubit</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^{-15} in a band around 6.011 GHz (24.86  μeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter.</description><subject>Dark matter</subject><subject>Electromagnetic fields</subject><subject>Linear amplifiers</subject><subject>Markov chains</subject><subject>Microwave frequencies</subject><subject>Noise levels</subject><subject>Noise reduction</subject><subject>Photons</subject><subject>Quantum nondemolition</subject><subject>Quantum sensors</subject><subject>Qubits (quantum computing)</subject><subject>Query languages</subject><subject>Searching</subject><subject>Superconductivity</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0MlOwzAQgGELgaAUXqGK4MIlZSZO7OSIyioVsRTOlrfQQJsU2wH17UlpQYiTL9-Mxj8hA4QhItDT--nSP9qPsQ1hiAkbYooUki3SQ-BFzBHTbdIDoBgXAHyP7Hv_CgAdzXfJHqV5gSnNe4RNrHR6WtUvUdm46Fy6t-hWhmBd9FmFaSSjSbuwTje1aXVYsYdWVeGA7JRy5u3h5u2T58uLp9F1PL67uhmdjWOdMh5ikylGM6UkcMtKVVIFylAwScGyApVOLaYZRyaVQVlyw2WiDcsMU5gbKDjtk6P13saHSnhdBaun3TG11UEg5xlg0aGTNVq45r21Poh55bWdzWRtm9aLJMM8QZZntKPH_-hr07q6-8K3SjEHZJ1ia6Vd472zpVi4ai7dUiCIVX7xJ7_omop1_m5wsFnfqrk1v2M_vekXr-uB6A</recordid><startdate>20210409</startdate><enddate>20210409</enddate><creator>Dixit, Akash V</creator><creator>Chakram, Srivatsan</creator><creator>He, Kevin</creator><creator>Agrawal, Ankur</creator><creator>Naik, Ravi K</creator><creator>Schuster, David I</creator><creator>Chou, Aaron</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4816-9740</orcidid><orcidid>https://orcid.org/0000-0003-2337-7321</orcidid><orcidid>https://orcid.org/0000-0001-6699-7198</orcidid><orcidid>https://orcid.org/0000-0003-2304-3436</orcidid><orcidid>https://orcid.org/0000000323377321</orcidid><orcidid>https://orcid.org/0000000166997198</orcidid><orcidid>https://orcid.org/0000000248169740</orcidid><orcidid>https://orcid.org/0000000323043436</orcidid></search><sort><creationdate>20210409</creationdate><title>Searching for Dark Matter with a Superconducting Qubit</title><author>Dixit, Akash V ; Chakram, Srivatsan ; He, Kevin ; Agrawal, Ankur ; Naik, Ravi K ; Schuster, David I ; Chou, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d5b635bba07e6fbf3b0bd30d296591bc4e145716abd1af7d7a2cd65d6b18d0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dark matter</topic><topic>Electromagnetic fields</topic><topic>Linear amplifiers</topic><topic>Markov chains</topic><topic>Microwave frequencies</topic><topic>Noise levels</topic><topic>Noise reduction</topic><topic>Photons</topic><topic>Quantum nondemolition</topic><topic>Quantum sensors</topic><topic>Qubits (quantum computing)</topic><topic>Query languages</topic><topic>Searching</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixit, Akash V</creatorcontrib><creatorcontrib>Chakram, Srivatsan</creatorcontrib><creatorcontrib>He, Kevin</creatorcontrib><creatorcontrib>Agrawal, Ankur</creatorcontrib><creatorcontrib>Naik, Ravi K</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><creatorcontrib>Chou, Aaron</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixit, Akash V</au><au>Chakram, Srivatsan</au><au>He, Kevin</au><au>Agrawal, Ankur</au><au>Naik, Ravi K</au><au>Schuster, David I</au><au>Chou, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Searching for Dark Matter with a Superconducting Qubit</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-04-09</date><risdate>2021</risdate><volume>126</volume><issue>14</issue><spage>141302</spage><epage>141302</epage><pages>141302-141302</pages><artnum>141302</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^{-15} in a band around 6.011 GHz (24.86  μeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33891438</pmid><doi>10.1103/PhysRevLett.126.141302</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4816-9740</orcidid><orcidid>https://orcid.org/0000-0003-2337-7321</orcidid><orcidid>https://orcid.org/0000-0001-6699-7198</orcidid><orcidid>https://orcid.org/0000-0003-2304-3436</orcidid><orcidid>https://orcid.org/0000000323377321</orcidid><orcidid>https://orcid.org/0000000166997198</orcidid><orcidid>https://orcid.org/0000000248169740</orcidid><orcidid>https://orcid.org/0000000323043436</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-04, Vol.126 (14), p.141302-141302, Article 141302
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1775019
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Dark matter
Electromagnetic fields
Linear amplifiers
Markov chains
Microwave frequencies
Noise levels
Noise reduction
Photons
Quantum nondemolition
Quantum sensors
Qubits (quantum computing)
Query languages
Searching
Superconductivity
title Searching for Dark Matter with a Superconducting Qubit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Searching%20for%20Dark%20Matter%20with%20a%20Superconducting%20Qubit&rft.jtitle=Physical%20review%20letters&rft.au=Dixit,%20Akash%20V&rft.date=2021-04-09&rft.volume=126&rft.issue=14&rft.spage=141302&rft.epage=141302&rft.pages=141302-141302&rft.artnum=141302&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.141302&rft_dat=%3Cproquest_osti_%3E2518216853%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518418016&rft_id=info:pmid/33891438&rfr_iscdi=true