Searching for Dark Matter with a Superconducting Qubit
Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at micro...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-04, Vol.126 (14), p.141302-141302, Article 141302 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141302 |
---|---|
container_issue | 14 |
container_start_page | 141302 |
container_title | Physical review letters |
container_volume | 126 |
creator | Dixit, Akash V Chakram, Srivatsan He, Kevin Agrawal, Ankur Naik, Ravi K Schuster, David I Chou, Aaron |
description | Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^{-15} in a band around 6.011 GHz (24.86 μeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter. |
doi_str_mv | 10.1103/PhysRevLett.126.141302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1775019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518216853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d5b635bba07e6fbf3b0bd30d296591bc4e145716abd1af7d7a2cd65d6b18d0973</originalsourceid><addsrcrecordid>eNpd0MlOwzAQgGELgaAUXqGK4MIlZSZO7OSIyioVsRTOlrfQQJsU2wH17UlpQYiTL9-Mxj8hA4QhItDT--nSP9qPsQ1hiAkbYooUki3SQ-BFzBHTbdIDoBgXAHyP7Hv_CgAdzXfJHqV5gSnNe4RNrHR6WtUvUdm46Fy6t-hWhmBd9FmFaSSjSbuwTje1aXVYsYdWVeGA7JRy5u3h5u2T58uLp9F1PL67uhmdjWOdMh5ikylGM6UkcMtKVVIFylAwScGyApVOLaYZRyaVQVlyw2WiDcsMU5gbKDjtk6P13saHSnhdBaun3TG11UEg5xlg0aGTNVq45r21Poh55bWdzWRtm9aLJMM8QZZntKPH_-hr07q6-8K3SjEHZJ1ia6Vd472zpVi4ai7dUiCIVX7xJ7_omop1_m5wsFnfqrk1v2M_vekXr-uB6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518418016</pqid></control><display><type>article</type><title>Searching for Dark Matter with a Superconducting Qubit</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dixit, Akash V ; Chakram, Srivatsan ; He, Kevin ; Agrawal, Ankur ; Naik, Ravi K ; Schuster, David I ; Chou, Aaron</creator><creatorcontrib>Dixit, Akash V ; Chakram, Srivatsan ; He, Kevin ; Agrawal, Ankur ; Naik, Ravi K ; Schuster, David I ; Chou, Aaron</creatorcontrib><description>Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^{-15} in a band around 6.011 GHz (24.86 μeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.141302</identifier><identifier>PMID: 33891438</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Dark matter ; Electromagnetic fields ; Linear amplifiers ; Markov chains ; Microwave frequencies ; Noise levels ; Noise reduction ; Photons ; Quantum nondemolition ; Quantum sensors ; Qubits (quantum computing) ; Query languages ; Searching ; Superconductivity</subject><ispartof>Physical review letters, 2021-04, Vol.126 (14), p.141302-141302, Article 141302</ispartof><rights>Copyright American Physical Society Apr 9, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d5b635bba07e6fbf3b0bd30d296591bc4e145716abd1af7d7a2cd65d6b18d0973</citedby><cites>FETCH-LOGICAL-c467t-d5b635bba07e6fbf3b0bd30d296591bc4e145716abd1af7d7a2cd65d6b18d0973</cites><orcidid>0000-0002-4816-9740 ; 0000-0003-2337-7321 ; 0000-0001-6699-7198 ; 0000-0003-2304-3436 ; 0000000323377321 ; 0000000166997198 ; 0000000248169740 ; 0000000323043436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33891438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1775019$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixit, Akash V</creatorcontrib><creatorcontrib>Chakram, Srivatsan</creatorcontrib><creatorcontrib>He, Kevin</creatorcontrib><creatorcontrib>Agrawal, Ankur</creatorcontrib><creatorcontrib>Naik, Ravi K</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><creatorcontrib>Chou, Aaron</creatorcontrib><title>Searching for Dark Matter with a Superconducting Qubit</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^{-15} in a band around 6.011 GHz (24.86 μeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter.</description><subject>Dark matter</subject><subject>Electromagnetic fields</subject><subject>Linear amplifiers</subject><subject>Markov chains</subject><subject>Microwave frequencies</subject><subject>Noise levels</subject><subject>Noise reduction</subject><subject>Photons</subject><subject>Quantum nondemolition</subject><subject>Quantum sensors</subject><subject>Qubits (quantum computing)</subject><subject>Query languages</subject><subject>Searching</subject><subject>Superconductivity</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0MlOwzAQgGELgaAUXqGK4MIlZSZO7OSIyioVsRTOlrfQQJsU2wH17UlpQYiTL9-Mxj8hA4QhItDT--nSP9qPsQ1hiAkbYooUki3SQ-BFzBHTbdIDoBgXAHyP7Hv_CgAdzXfJHqV5gSnNe4RNrHR6WtUvUdm46Fy6t-hWhmBd9FmFaSSjSbuwTje1aXVYsYdWVeGA7JRy5u3h5u2T58uLp9F1PL67uhmdjWOdMh5ikylGM6UkcMtKVVIFylAwScGyApVOLaYZRyaVQVlyw2WiDcsMU5gbKDjtk6P13saHSnhdBaun3TG11UEg5xlg0aGTNVq45r21Poh55bWdzWRtm9aLJMM8QZZntKPH_-hr07q6-8K3SjEHZJ1ia6Vd472zpVi4ai7dUiCIVX7xJ7_omop1_m5wsFnfqrk1v2M_vekXr-uB6A</recordid><startdate>20210409</startdate><enddate>20210409</enddate><creator>Dixit, Akash V</creator><creator>Chakram, Srivatsan</creator><creator>He, Kevin</creator><creator>Agrawal, Ankur</creator><creator>Naik, Ravi K</creator><creator>Schuster, David I</creator><creator>Chou, Aaron</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4816-9740</orcidid><orcidid>https://orcid.org/0000-0003-2337-7321</orcidid><orcidid>https://orcid.org/0000-0001-6699-7198</orcidid><orcidid>https://orcid.org/0000-0003-2304-3436</orcidid><orcidid>https://orcid.org/0000000323377321</orcidid><orcidid>https://orcid.org/0000000166997198</orcidid><orcidid>https://orcid.org/0000000248169740</orcidid><orcidid>https://orcid.org/0000000323043436</orcidid></search><sort><creationdate>20210409</creationdate><title>Searching for Dark Matter with a Superconducting Qubit</title><author>Dixit, Akash V ; Chakram, Srivatsan ; He, Kevin ; Agrawal, Ankur ; Naik, Ravi K ; Schuster, David I ; Chou, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d5b635bba07e6fbf3b0bd30d296591bc4e145716abd1af7d7a2cd65d6b18d0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dark matter</topic><topic>Electromagnetic fields</topic><topic>Linear amplifiers</topic><topic>Markov chains</topic><topic>Microwave frequencies</topic><topic>Noise levels</topic><topic>Noise reduction</topic><topic>Photons</topic><topic>Quantum nondemolition</topic><topic>Quantum sensors</topic><topic>Qubits (quantum computing)</topic><topic>Query languages</topic><topic>Searching</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixit, Akash V</creatorcontrib><creatorcontrib>Chakram, Srivatsan</creatorcontrib><creatorcontrib>He, Kevin</creatorcontrib><creatorcontrib>Agrawal, Ankur</creatorcontrib><creatorcontrib>Naik, Ravi K</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><creatorcontrib>Chou, Aaron</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixit, Akash V</au><au>Chakram, Srivatsan</au><au>He, Kevin</au><au>Agrawal, Ankur</au><au>Naik, Ravi K</au><au>Schuster, David I</au><au>Chou, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Searching for Dark Matter with a Superconducting Qubit</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-04-09</date><risdate>2021</risdate><volume>126</volume><issue>14</issue><spage>141302</spage><epage>141302</epage><pages>141302-141302</pages><artnum>141302</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^{-15} in a band around 6.011 GHz (24.86 μeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33891438</pmid><doi>10.1103/PhysRevLett.126.141302</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4816-9740</orcidid><orcidid>https://orcid.org/0000-0003-2337-7321</orcidid><orcidid>https://orcid.org/0000-0001-6699-7198</orcidid><orcidid>https://orcid.org/0000-0003-2304-3436</orcidid><orcidid>https://orcid.org/0000000323377321</orcidid><orcidid>https://orcid.org/0000000166997198</orcidid><orcidid>https://orcid.org/0000000248169740</orcidid><orcidid>https://orcid.org/0000000323043436</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-04, Vol.126 (14), p.141302-141302, Article 141302 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1775019 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Dark matter Electromagnetic fields Linear amplifiers Markov chains Microwave frequencies Noise levels Noise reduction Photons Quantum nondemolition Quantum sensors Qubits (quantum computing) Query languages Searching Superconductivity |
title | Searching for Dark Matter with a Superconducting Qubit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Searching%20for%20Dark%20Matter%20with%20a%20Superconducting%20Qubit&rft.jtitle=Physical%20review%20letters&rft.au=Dixit,%20Akash%20V&rft.date=2021-04-09&rft.volume=126&rft.issue=14&rft.spage=141302&rft.epage=141302&rft.pages=141302-141302&rft.artnum=141302&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.141302&rft_dat=%3Cproquest_osti_%3E2518216853%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518418016&rft_id=info:pmid/33891438&rfr_iscdi=true |