Molecular Engineering to Enable High-Voltage Lithium-Ion Battery: From Propylene Carbonate to Trifluoropropylene Carbonate
Molecular engineering of electrolyte structures has led to the successful application of trifluoropropylene carbonate (TFPC), a fluorinated derivative of propylene carbonate (PC), in next-generation high-voltage high-energy lithium-ion cell. In contrast to a PC-based electrolyte which cointercalates...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2021-02, Vol.6 (2), p.371-378 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 2 |
container_start_page | 371 |
container_title | ACS energy letters |
container_volume | 6 |
creator | Yang, Jianzhong Liu, Qian Pupek, Krzysztof Z Dzwiniel, Trevor L Dietz Rago, Nancy L Cao, Jiayu Dandu, Naveen Curtiss, Larry Liu, Kewei Liao, Chen Zhang, Zhengcheng |
description | Molecular engineering of electrolyte structures has led to the successful application of trifluoropropylene carbonate (TFPC), a fluorinated derivative of propylene carbonate (PC), in next-generation high-voltage high-energy lithium-ion cell. In contrast to a PC-based electrolyte which cointercalates in the form of Li+-solvated species into the graphene layer and exfoliates a graphite anode, a TFPC-based electrolyte is highly compatible with a graphite anode at low potential. Additionally, it shows exceptional oxidation stability on the charged cathode surface owing to the presence of the −CF3 group. An all-fluorinated electrolyte, that is, 1.0 M LiPF6 TFPC/2,2,2-trifluoroethyl carbonate (FEMC) (1/1 volume ratio) + FEC additive, was formulated and demonstrated excellent cycling stability in a high-voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled between 3.0 and 4.6 V. |
doi_str_mv | 10.1021/acsenergylett.0c02400 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1774156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b061289883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-1988110f260981842ac0df07230e2b74958c30e416a4cfc0ee99bd89c1f142333</originalsourceid><addsrcrecordid>eNqFUEtLAzEQDqJgqf0JwuJ960z2lfWmpbVCRQ_V65JNZ7cp26Rk00P99aa0B8WDzGFm-B7MfIzdIowRON5L1ZMh1x468n4MCngKcMEGPBEQCyyzyx_zNRv1_QYAMBdZqAH7erUdqX0nXTQ1rTZETps28jassu4omut2HX_azsuWooX2a73fxi_WRE_Se3KHh2jm7DZ6d3YXTjAUTaSrrZGejiZLp5tubwP4F79hV43sehqd-5B9zKbLyTxevD2_TB4XsUzy0sdYCoEIDc-hFChSLhWsGih4AsTrIi0zocKYYi5T1SggKst6JUqFDaY8SZIhuzv52t7rqlfak1orawwpX2FRpJjlgZSdSMrZvnfUVDunt9IdKoTqGHT1K-jqHHTQ4UkX4Gpj986EV_7RfANBHoeD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Engineering to Enable High-Voltage Lithium-Ion Battery: From Propylene Carbonate to Trifluoropropylene Carbonate</title><source>American Chemical Society Journals</source><creator>Yang, Jianzhong ; Liu, Qian ; Pupek, Krzysztof Z ; Dzwiniel, Trevor L ; Dietz Rago, Nancy L ; Cao, Jiayu ; Dandu, Naveen ; Curtiss, Larry ; Liu, Kewei ; Liao, Chen ; Zhang, Zhengcheng</creator><creatorcontrib>Yang, Jianzhong ; Liu, Qian ; Pupek, Krzysztof Z ; Dzwiniel, Trevor L ; Dietz Rago, Nancy L ; Cao, Jiayu ; Dandu, Naveen ; Curtiss, Larry ; Liu, Kewei ; Liao, Chen ; Zhang, Zhengcheng ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Molecular engineering of electrolyte structures has led to the successful application of trifluoropropylene carbonate (TFPC), a fluorinated derivative of propylene carbonate (PC), in next-generation high-voltage high-energy lithium-ion cell. In contrast to a PC-based electrolyte which cointercalates in the form of Li+-solvated species into the graphene layer and exfoliates a graphite anode, a TFPC-based electrolyte is highly compatible with a graphite anode at low potential. Additionally, it shows exceptional oxidation stability on the charged cathode surface owing to the presence of the −CF3 group. An all-fluorinated electrolyte, that is, 1.0 M LiPF6 TFPC/2,2,2-trifluoroethyl carbonate (FEMC) (1/1 volume ratio) + FEC additive, was formulated and demonstrated excellent cycling stability in a high-voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled between 3.0 and 4.6 V.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.0c02400</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>electrochemical cells ; Electrodes ; electrolytes ; ENERGY STORAGE ; inorganic carbon compounds ; surface chemistry</subject><ispartof>ACS energy letters, 2021-02, Vol.6 (2), p.371-378</ispartof><rights>2021 UChicago Argonne, LLC, Operator of Argonne National Lab. Published by American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-1988110f260981842ac0df07230e2b74958c30e416a4cfc0ee99bd89c1f142333</citedby><cites>FETCH-LOGICAL-a369t-1988110f260981842ac0df07230e2b74958c30e416a4cfc0ee99bd89c1f142333</cites><orcidid>0000-0001-5168-6493 ; 0000-0001-7122-8537 ; 0000-0002-0467-5801 ; 0000-0001-5482-2382 ; 0000-0001-8855-8006 ; 0000000151686493 ; 0000000188558006 ; 0000000204675801 ; 0000000171228537 ; 0000000154822382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.0c02400$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.0c02400$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1774156$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jianzhong</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Pupek, Krzysztof Z</creatorcontrib><creatorcontrib>Dzwiniel, Trevor L</creatorcontrib><creatorcontrib>Dietz Rago, Nancy L</creatorcontrib><creatorcontrib>Cao, Jiayu</creatorcontrib><creatorcontrib>Dandu, Naveen</creatorcontrib><creatorcontrib>Curtiss, Larry</creatorcontrib><creatorcontrib>Liu, Kewei</creatorcontrib><creatorcontrib>Liao, Chen</creatorcontrib><creatorcontrib>Zhang, Zhengcheng</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Molecular Engineering to Enable High-Voltage Lithium-Ion Battery: From Propylene Carbonate to Trifluoropropylene Carbonate</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Molecular engineering of electrolyte structures has led to the successful application of trifluoropropylene carbonate (TFPC), a fluorinated derivative of propylene carbonate (PC), in next-generation high-voltage high-energy lithium-ion cell. In contrast to a PC-based electrolyte which cointercalates in the form of Li+-solvated species into the graphene layer and exfoliates a graphite anode, a TFPC-based electrolyte is highly compatible with a graphite anode at low potential. Additionally, it shows exceptional oxidation stability on the charged cathode surface owing to the presence of the −CF3 group. An all-fluorinated electrolyte, that is, 1.0 M LiPF6 TFPC/2,2,2-trifluoroethyl carbonate (FEMC) (1/1 volume ratio) + FEC additive, was formulated and demonstrated excellent cycling stability in a high-voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled between 3.0 and 4.6 V.</description><subject>electrochemical cells</subject><subject>Electrodes</subject><subject>electrolytes</subject><subject>ENERGY STORAGE</subject><subject>inorganic carbon compounds</subject><subject>surface chemistry</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLAzEQDqJgqf0JwuJ960z2lfWmpbVCRQ_V65JNZ7cp26Rk00P99aa0B8WDzGFm-B7MfIzdIowRON5L1ZMh1x468n4MCngKcMEGPBEQCyyzyx_zNRv1_QYAMBdZqAH7erUdqX0nXTQ1rTZETps28jassu4omut2HX_azsuWooX2a73fxi_WRE_Se3KHh2jm7DZ6d3YXTjAUTaSrrZGejiZLp5tubwP4F79hV43sehqd-5B9zKbLyTxevD2_TB4XsUzy0sdYCoEIDc-hFChSLhWsGih4AsTrIi0zocKYYi5T1SggKst6JUqFDaY8SZIhuzv52t7rqlfak1orawwpX2FRpJjlgZSdSMrZvnfUVDunt9IdKoTqGHT1K-jqHHTQ4UkX4Gpj986EV_7RfANBHoeD</recordid><startdate>20210212</startdate><enddate>20210212</enddate><creator>Yang, Jianzhong</creator><creator>Liu, Qian</creator><creator>Pupek, Krzysztof Z</creator><creator>Dzwiniel, Trevor L</creator><creator>Dietz Rago, Nancy L</creator><creator>Cao, Jiayu</creator><creator>Dandu, Naveen</creator><creator>Curtiss, Larry</creator><creator>Liu, Kewei</creator><creator>Liao, Chen</creator><creator>Zhang, Zhengcheng</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5168-6493</orcidid><orcidid>https://orcid.org/0000-0001-7122-8537</orcidid><orcidid>https://orcid.org/0000-0002-0467-5801</orcidid><orcidid>https://orcid.org/0000-0001-5482-2382</orcidid><orcidid>https://orcid.org/0000-0001-8855-8006</orcidid><orcidid>https://orcid.org/0000000151686493</orcidid><orcidid>https://orcid.org/0000000188558006</orcidid><orcidid>https://orcid.org/0000000204675801</orcidid><orcidid>https://orcid.org/0000000171228537</orcidid><orcidid>https://orcid.org/0000000154822382</orcidid></search><sort><creationdate>20210212</creationdate><title>Molecular Engineering to Enable High-Voltage Lithium-Ion Battery: From Propylene Carbonate to Trifluoropropylene Carbonate</title><author>Yang, Jianzhong ; Liu, Qian ; Pupek, Krzysztof Z ; Dzwiniel, Trevor L ; Dietz Rago, Nancy L ; Cao, Jiayu ; Dandu, Naveen ; Curtiss, Larry ; Liu, Kewei ; Liao, Chen ; Zhang, Zhengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-1988110f260981842ac0df07230e2b74958c30e416a4cfc0ee99bd89c1f142333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>electrochemical cells</topic><topic>Electrodes</topic><topic>electrolytes</topic><topic>ENERGY STORAGE</topic><topic>inorganic carbon compounds</topic><topic>surface chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianzhong</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Pupek, Krzysztof Z</creatorcontrib><creatorcontrib>Dzwiniel, Trevor L</creatorcontrib><creatorcontrib>Dietz Rago, Nancy L</creatorcontrib><creatorcontrib>Cao, Jiayu</creatorcontrib><creatorcontrib>Dandu, Naveen</creatorcontrib><creatorcontrib>Curtiss, Larry</creatorcontrib><creatorcontrib>Liu, Kewei</creatorcontrib><creatorcontrib>Liao, Chen</creatorcontrib><creatorcontrib>Zhang, Zhengcheng</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianzhong</au><au>Liu, Qian</au><au>Pupek, Krzysztof Z</au><au>Dzwiniel, Trevor L</au><au>Dietz Rago, Nancy L</au><au>Cao, Jiayu</au><au>Dandu, Naveen</au><au>Curtiss, Larry</au><au>Liu, Kewei</au><au>Liao, Chen</au><au>Zhang, Zhengcheng</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Engineering to Enable High-Voltage Lithium-Ion Battery: From Propylene Carbonate to Trifluoropropylene Carbonate</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2021-02-12</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>371</spage><epage>378</epage><pages>371-378</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Molecular engineering of electrolyte structures has led to the successful application of trifluoropropylene carbonate (TFPC), a fluorinated derivative of propylene carbonate (PC), in next-generation high-voltage high-energy lithium-ion cell. In contrast to a PC-based electrolyte which cointercalates in the form of Li+-solvated species into the graphene layer and exfoliates a graphite anode, a TFPC-based electrolyte is highly compatible with a graphite anode at low potential. Additionally, it shows exceptional oxidation stability on the charged cathode surface owing to the presence of the −CF3 group. An all-fluorinated electrolyte, that is, 1.0 M LiPF6 TFPC/2,2,2-trifluoroethyl carbonate (FEMC) (1/1 volume ratio) + FEC additive, was formulated and demonstrated excellent cycling stability in a high-voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled between 3.0 and 4.6 V.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.0c02400</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5168-6493</orcidid><orcidid>https://orcid.org/0000-0001-7122-8537</orcidid><orcidid>https://orcid.org/0000-0002-0467-5801</orcidid><orcidid>https://orcid.org/0000-0001-5482-2382</orcidid><orcidid>https://orcid.org/0000-0001-8855-8006</orcidid><orcidid>https://orcid.org/0000000151686493</orcidid><orcidid>https://orcid.org/0000000188558006</orcidid><orcidid>https://orcid.org/0000000204675801</orcidid><orcidid>https://orcid.org/0000000171228537</orcidid><orcidid>https://orcid.org/0000000154822382</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2021-02, Vol.6 (2), p.371-378 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_osti_scitechconnect_1774156 |
source | American Chemical Society Journals |
subjects | electrochemical cells Electrodes electrolytes ENERGY STORAGE inorganic carbon compounds surface chemistry |
title | Molecular Engineering to Enable High-Voltage Lithium-Ion Battery: From Propylene Carbonate to Trifluoropropylene Carbonate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Engineering%20to%20Enable%20High-Voltage%20Lithium-Ion%20Battery:%20From%20Propylene%20Carbonate%20to%20Trifluoropropylene%20Carbonate&rft.jtitle=ACS%20energy%20letters&rft.au=Yang,%20Jianzhong&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-02-12&rft.volume=6&rft.issue=2&rft.spage=371&rft.epage=378&rft.pages=371-378&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.0c02400&rft_dat=%3Cacs_osti_%3Eb061289883%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |