A hybrid optoelectronic Mott insulator

The coupling of electronic degrees of freedom in materials to create “hybridized functionalities” is a holy grail of modern condensed matter physics that may produce versatile mechanisms of control. Correlated electron systems often exhibit coupled degrees of freedom with a high degree of tunability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-04, Vol.118 (14)
Hauptverfasser: Navarro, H., del Valle, J., Kalcheim, Y., Vargas, N. M., Adda, C., Lee, M.-H., Lapa, P., Rivera-Calzada, A., Zaluzhnyy, I. A., Qiu, E., Shpyrko, O., Rozenberg, M., Frano, A., Schuller, Ivan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Applied physics letters
container_volume 118
creator Navarro, H.
del Valle, J.
Kalcheim, Y.
Vargas, N. M.
Adda, C.
Lee, M.-H.
Lapa, P.
Rivera-Calzada, A.
Zaluzhnyy, I. A.
Qiu, E.
Shpyrko, O.
Rozenberg, M.
Frano, A.
Schuller, Ivan K.
description The coupling of electronic degrees of freedom in materials to create “hybridized functionalities” is a holy grail of modern condensed matter physics that may produce versatile mechanisms of control. Correlated electron systems often exhibit coupled degrees of freedom with a high degree of tunability which sometimes lead to hybridized functionalities based on external stimuli. However, the mechanisms of tunability and the sensitivity to external stimuli are determined by intrinsic material properties which are not always controllable. A Mott metal-insulator transition (MIT) is technologically attractive due to the large changes in resistance, tunable by doping, strain, electric fields, and orbital occupancy but not, in and of itself, controllable with light. Here, an alternate approach is presented to produce optical functionalities using a properly engineered photoconductor/strongly correlated hybrid heterostructure. This approach combines a photoconductor, which does not exhibit an MIT, with a strongly correlated oxide, which is not photoconducting. Due to the intimate proximity between the two materials, the heterostructure exhibits giant volatile and nonvolatile, photoinduced resistivity changes with substantial shifts in the MIT transition temperatures. This approach can be extended to other judicious combinations of strongly correlated materials.
doi_str_mv 10.1063/5.0044066
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1773946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508690244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-723883172d3d05b4d06797e362b2b1833d95a2ac4db0423c725b396f6c0ec3aa3</originalsourceid><addsrcrecordid>eNp90FFLwzAQB_AgCs7pg9-gKAgKnZdcmrSPY6gTJr7oc0jTlmXUZibZYN_ejg73IPh05Pjlz90Rck1hQkHgYzYB4ByEOCEjClKmSGl-SkYAgKkoMnpOLkJY9c-MIY7I3TRZ7kpvq8Sto6vb2kTvOmuSNxdjYruwaXV0_pKcNboN9dWhjsnn89PHbJ4u3l9eZ9NFajjDmEqGeY5UsgoryEpegZCFrFGwkpU0R6yKTDNteFVC_8FIlpVYiEYYqA1qjWNyM-S6EK0KxsbaLI3run4uRaXEgose3Q9oqVu19vZL-51y2qr5dKH2PUBkyAXb0t7eDnbt3femDlGt3MZ3_Q6KZZCLAhjnx0TjXQi-bn5jKaj9XVWmDnft7cNg99PpaF33i7fOH6FaV81_-G_yDzY4gfc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508690244</pqid></control><display><type>article</type><title>A hybrid optoelectronic Mott insulator</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Navarro, H. ; del Valle, J. ; Kalcheim, Y. ; Vargas, N. M. ; Adda, C. ; Lee, M.-H. ; Lapa, P. ; Rivera-Calzada, A. ; Zaluzhnyy, I. A. ; Qiu, E. ; Shpyrko, O. ; Rozenberg, M. ; Frano, A. ; Schuller, Ivan K.</creator><creatorcontrib>Navarro, H. ; del Valle, J. ; Kalcheim, Y. ; Vargas, N. M. ; Adda, C. ; Lee, M.-H. ; Lapa, P. ; Rivera-Calzada, A. ; Zaluzhnyy, I. A. ; Qiu, E. ; Shpyrko, O. ; Rozenberg, M. ; Frano, A. ; Schuller, Ivan K.</creatorcontrib><description>The coupling of electronic degrees of freedom in materials to create “hybridized functionalities” is a holy grail of modern condensed matter physics that may produce versatile mechanisms of control. Correlated electron systems often exhibit coupled degrees of freedom with a high degree of tunability which sometimes lead to hybridized functionalities based on external stimuli. However, the mechanisms of tunability and the sensitivity to external stimuli are determined by intrinsic material properties which are not always controllable. A Mott metal-insulator transition (MIT) is technologically attractive due to the large changes in resistance, tunable by doping, strain, electric fields, and orbital occupancy but not, in and of itself, controllable with light. Here, an alternate approach is presented to produce optical functionalities using a properly engineered photoconductor/strongly correlated hybrid heterostructure. This approach combines a photoconductor, which does not exhibit an MIT, with a strongly correlated oxide, which is not photoconducting. Due to the intimate proximity between the two materials, the heterostructure exhibits giant volatile and nonvolatile, photoinduced resistivity changes with substantial shifts in the MIT transition temperatures. This approach can be extended to other judicious combinations of strongly correlated materials.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0044066</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Condensed Matter ; Condensed matter physics ; Correlation ; Degrees of freedom ; Electric fields ; Heterostructures ; Insulators ; Material properties ; Metal-insulator transition ; Occupancy ; Optoelectronics ; Physics ; Stability ; Stimuli</subject><ispartof>Applied physics letters, 2021-04, Vol.118 (14)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-723883172d3d05b4d06797e362b2b1833d95a2ac4db0423c725b396f6c0ec3aa3</citedby><cites>FETCH-LOGICAL-c423t-723883172d3d05b4d06797e362b2b1833d95a2ac4db0423c725b396f6c0ec3aa3</cites><orcidid>0000-0001-6744-590X ; 0000-0001-9093-4891 ; 0000-0002-6210-5321 ; 0000-0002-4981-5193 ; 0000-0003-2899-1953 ; 0000-0001-9316-129X ; 0000-0002-0444-3250 ; 0000-0001-9161-0370 ; 0000-0001-5946-2777 ; 000000019316129X ; 0000000328991953 ; 0000000249815193 ; 0000000191610370 ; 0000000190934891 ; 000000016744590X ; 0000000159462777 ; 0000000204443250 ; 0000000262105321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0044066$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://enpc.hal.science/hal-03323462$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1773946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Navarro, H.</creatorcontrib><creatorcontrib>del Valle, J.</creatorcontrib><creatorcontrib>Kalcheim, Y.</creatorcontrib><creatorcontrib>Vargas, N. M.</creatorcontrib><creatorcontrib>Adda, C.</creatorcontrib><creatorcontrib>Lee, M.-H.</creatorcontrib><creatorcontrib>Lapa, P.</creatorcontrib><creatorcontrib>Rivera-Calzada, A.</creatorcontrib><creatorcontrib>Zaluzhnyy, I. A.</creatorcontrib><creatorcontrib>Qiu, E.</creatorcontrib><creatorcontrib>Shpyrko, O.</creatorcontrib><creatorcontrib>Rozenberg, M.</creatorcontrib><creatorcontrib>Frano, A.</creatorcontrib><creatorcontrib>Schuller, Ivan K.</creatorcontrib><title>A hybrid optoelectronic Mott insulator</title><title>Applied physics letters</title><description>The coupling of electronic degrees of freedom in materials to create “hybridized functionalities” is a holy grail of modern condensed matter physics that may produce versatile mechanisms of control. Correlated electron systems often exhibit coupled degrees of freedom with a high degree of tunability which sometimes lead to hybridized functionalities based on external stimuli. However, the mechanisms of tunability and the sensitivity to external stimuli are determined by intrinsic material properties which are not always controllable. A Mott metal-insulator transition (MIT) is technologically attractive due to the large changes in resistance, tunable by doping, strain, electric fields, and orbital occupancy but not, in and of itself, controllable with light. Here, an alternate approach is presented to produce optical functionalities using a properly engineered photoconductor/strongly correlated hybrid heterostructure. This approach combines a photoconductor, which does not exhibit an MIT, with a strongly correlated oxide, which is not photoconducting. Due to the intimate proximity between the two materials, the heterostructure exhibits giant volatile and nonvolatile, photoinduced resistivity changes with substantial shifts in the MIT transition temperatures. This approach can be extended to other judicious combinations of strongly correlated materials.</description><subject>Applied physics</subject><subject>Condensed Matter</subject><subject>Condensed matter physics</subject><subject>Correlation</subject><subject>Degrees of freedom</subject><subject>Electric fields</subject><subject>Heterostructures</subject><subject>Insulators</subject><subject>Material properties</subject><subject>Metal-insulator transition</subject><subject>Occupancy</subject><subject>Optoelectronics</subject><subject>Physics</subject><subject>Stability</subject><subject>Stimuli</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90FFLwzAQB_AgCs7pg9-gKAgKnZdcmrSPY6gTJr7oc0jTlmXUZibZYN_ejg73IPh05Pjlz90Rck1hQkHgYzYB4ByEOCEjClKmSGl-SkYAgKkoMnpOLkJY9c-MIY7I3TRZ7kpvq8Sto6vb2kTvOmuSNxdjYruwaXV0_pKcNboN9dWhjsnn89PHbJ4u3l9eZ9NFajjDmEqGeY5UsgoryEpegZCFrFGwkpU0R6yKTDNteFVC_8FIlpVYiEYYqA1qjWNyM-S6EK0KxsbaLI3run4uRaXEgose3Q9oqVu19vZL-51y2qr5dKH2PUBkyAXb0t7eDnbt3femDlGt3MZ3_Q6KZZCLAhjnx0TjXQi-bn5jKaj9XVWmDnft7cNg99PpaF33i7fOH6FaV81_-G_yDzY4gfc</recordid><startdate>20210405</startdate><enddate>20210405</enddate><creator>Navarro, H.</creator><creator>del Valle, J.</creator><creator>Kalcheim, Y.</creator><creator>Vargas, N. M.</creator><creator>Adda, C.</creator><creator>Lee, M.-H.</creator><creator>Lapa, P.</creator><creator>Rivera-Calzada, A.</creator><creator>Zaluzhnyy, I. A.</creator><creator>Qiu, E.</creator><creator>Shpyrko, O.</creator><creator>Rozenberg, M.</creator><creator>Frano, A.</creator><creator>Schuller, Ivan K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6744-590X</orcidid><orcidid>https://orcid.org/0000-0001-9093-4891</orcidid><orcidid>https://orcid.org/0000-0002-6210-5321</orcidid><orcidid>https://orcid.org/0000-0002-4981-5193</orcidid><orcidid>https://orcid.org/0000-0003-2899-1953</orcidid><orcidid>https://orcid.org/0000-0001-9316-129X</orcidid><orcidid>https://orcid.org/0000-0002-0444-3250</orcidid><orcidid>https://orcid.org/0000-0001-9161-0370</orcidid><orcidid>https://orcid.org/0000-0001-5946-2777</orcidid><orcidid>https://orcid.org/000000019316129X</orcidid><orcidid>https://orcid.org/0000000328991953</orcidid><orcidid>https://orcid.org/0000000249815193</orcidid><orcidid>https://orcid.org/0000000191610370</orcidid><orcidid>https://orcid.org/0000000190934891</orcidid><orcidid>https://orcid.org/000000016744590X</orcidid><orcidid>https://orcid.org/0000000159462777</orcidid><orcidid>https://orcid.org/0000000204443250</orcidid><orcidid>https://orcid.org/0000000262105321</orcidid></search><sort><creationdate>20210405</creationdate><title>A hybrid optoelectronic Mott insulator</title><author>Navarro, H. ; del Valle, J. ; Kalcheim, Y. ; Vargas, N. M. ; Adda, C. ; Lee, M.-H. ; Lapa, P. ; Rivera-Calzada, A. ; Zaluzhnyy, I. A. ; Qiu, E. ; Shpyrko, O. ; Rozenberg, M. ; Frano, A. ; Schuller, Ivan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-723883172d3d05b4d06797e362b2b1833d95a2ac4db0423c725b396f6c0ec3aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Condensed Matter</topic><topic>Condensed matter physics</topic><topic>Correlation</topic><topic>Degrees of freedom</topic><topic>Electric fields</topic><topic>Heterostructures</topic><topic>Insulators</topic><topic>Material properties</topic><topic>Metal-insulator transition</topic><topic>Occupancy</topic><topic>Optoelectronics</topic><topic>Physics</topic><topic>Stability</topic><topic>Stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro, H.</creatorcontrib><creatorcontrib>del Valle, J.</creatorcontrib><creatorcontrib>Kalcheim, Y.</creatorcontrib><creatorcontrib>Vargas, N. M.</creatorcontrib><creatorcontrib>Adda, C.</creatorcontrib><creatorcontrib>Lee, M.-H.</creatorcontrib><creatorcontrib>Lapa, P.</creatorcontrib><creatorcontrib>Rivera-Calzada, A.</creatorcontrib><creatorcontrib>Zaluzhnyy, I. A.</creatorcontrib><creatorcontrib>Qiu, E.</creatorcontrib><creatorcontrib>Shpyrko, O.</creatorcontrib><creatorcontrib>Rozenberg, M.</creatorcontrib><creatorcontrib>Frano, A.</creatorcontrib><creatorcontrib>Schuller, Ivan K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro, H.</au><au>del Valle, J.</au><au>Kalcheim, Y.</au><au>Vargas, N. M.</au><au>Adda, C.</au><au>Lee, M.-H.</au><au>Lapa, P.</au><au>Rivera-Calzada, A.</au><au>Zaluzhnyy, I. A.</au><au>Qiu, E.</au><au>Shpyrko, O.</au><au>Rozenberg, M.</au><au>Frano, A.</au><au>Schuller, Ivan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid optoelectronic Mott insulator</atitle><jtitle>Applied physics letters</jtitle><date>2021-04-05</date><risdate>2021</risdate><volume>118</volume><issue>14</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The coupling of electronic degrees of freedom in materials to create “hybridized functionalities” is a holy grail of modern condensed matter physics that may produce versatile mechanisms of control. Correlated electron systems often exhibit coupled degrees of freedom with a high degree of tunability which sometimes lead to hybridized functionalities based on external stimuli. However, the mechanisms of tunability and the sensitivity to external stimuli are determined by intrinsic material properties which are not always controllable. A Mott metal-insulator transition (MIT) is technologically attractive due to the large changes in resistance, tunable by doping, strain, electric fields, and orbital occupancy but not, in and of itself, controllable with light. Here, an alternate approach is presented to produce optical functionalities using a properly engineered photoconductor/strongly correlated hybrid heterostructure. This approach combines a photoconductor, which does not exhibit an MIT, with a strongly correlated oxide, which is not photoconducting. Due to the intimate proximity between the two materials, the heterostructure exhibits giant volatile and nonvolatile, photoinduced resistivity changes with substantial shifts in the MIT transition temperatures. This approach can be extended to other judicious combinations of strongly correlated materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0044066</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6744-590X</orcidid><orcidid>https://orcid.org/0000-0001-9093-4891</orcidid><orcidid>https://orcid.org/0000-0002-6210-5321</orcidid><orcidid>https://orcid.org/0000-0002-4981-5193</orcidid><orcidid>https://orcid.org/0000-0003-2899-1953</orcidid><orcidid>https://orcid.org/0000-0001-9316-129X</orcidid><orcidid>https://orcid.org/0000-0002-0444-3250</orcidid><orcidid>https://orcid.org/0000-0001-9161-0370</orcidid><orcidid>https://orcid.org/0000-0001-5946-2777</orcidid><orcidid>https://orcid.org/000000019316129X</orcidid><orcidid>https://orcid.org/0000000328991953</orcidid><orcidid>https://orcid.org/0000000249815193</orcidid><orcidid>https://orcid.org/0000000191610370</orcidid><orcidid>https://orcid.org/0000000190934891</orcidid><orcidid>https://orcid.org/000000016744590X</orcidid><orcidid>https://orcid.org/0000000159462777</orcidid><orcidid>https://orcid.org/0000000204443250</orcidid><orcidid>https://orcid.org/0000000262105321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-04, Vol.118 (14)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_1773946
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Condensed Matter
Condensed matter physics
Correlation
Degrees of freedom
Electric fields
Heterostructures
Insulators
Material properties
Metal-insulator transition
Occupancy
Optoelectronics
Physics
Stability
Stimuli
title A hybrid optoelectronic Mott insulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20optoelectronic%20Mott%20insulator&rft.jtitle=Applied%20physics%20letters&rft.au=Navarro,%20H.&rft.date=2021-04-05&rft.volume=118&rft.issue=14&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0044066&rft_dat=%3Cproquest_osti_%3E2508690244%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508690244&rft_id=info:pmid/&rfr_iscdi=true