Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase
Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) si...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2018-06, Vol.293 (25) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | |
container_title | The Journal of biological chemistry |
container_volume | 293 |
creator | Keable, Stephen M. Zadvornyy, Oleg A. Johnson, Lewis E. Ginovska, Bojana Rasmussen, Andrew J. Danyal, Karamatullah Eilers, Brian J. Prussia, Gregory A. LeVan, Axl X. Raugei, Simone Seefeldt, Lance C. Peters, John W. |
description | Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. Lastly, these results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1772834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1772834</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17728343</originalsourceid><addsrcrecordid>eNqNij0LwjAURYMoWD_-Q3CVQNK0tJ1FcRR00KmE56uN1ASS18Vfbwu6e4d74Zw7YYmSpRY6V9cpS6RMlajSvJyzRYxPOSSrVMJuZwo9UB9Mx6E1wQBhsG9D1jvuG04t8pPacusG_sK7NYQ80tg_K6Dr42BH4CwF_0BnIq7YrDFdxPV3l2xz2F92R-Ej2TqCJYQWvHMIVKuiSEud6b9OH5_bQ7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Keable, Stephen M. ; Zadvornyy, Oleg A. ; Johnson, Lewis E. ; Ginovska, Bojana ; Rasmussen, Andrew J. ; Danyal, Karamatullah ; Eilers, Brian J. ; Prussia, Gregory A. ; LeVan, Axl X. ; Raugei, Simone ; Seefeldt, Lance C. ; Peters, John W.</creator><creatorcontrib>Keable, Stephen M. ; Zadvornyy, Oleg A. ; Johnson, Lewis E. ; Ginovska, Bojana ; Rasmussen, Andrew J. ; Danyal, Karamatullah ; Eilers, Brian J. ; Prussia, Gregory A. ; LeVan, Axl X. ; Raugei, Simone ; Seefeldt, Lance C. ; Peters, John W. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. Lastly, these results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>[8Fe-7S] cluster ; computational biology ; enzyme structure ; MATERIALS SCIENCE ; metalloprotein ; nitrogen fixation ; nitrogen reduction ; nitrogenase ; oxidation-reduction (redox) ; P-cluster of MoFe protein ; poised states ; redox mediators ; redox-dependent ligand exchange</subject><ispartof>The Journal of biological chemistry, 2018-06, Vol.293 (25)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1772834$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Keable, Stephen M.</creatorcontrib><creatorcontrib>Zadvornyy, Oleg A.</creatorcontrib><creatorcontrib>Johnson, Lewis E.</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><creatorcontrib>Rasmussen, Andrew J.</creatorcontrib><creatorcontrib>Danyal, Karamatullah</creatorcontrib><creatorcontrib>Eilers, Brian J.</creatorcontrib><creatorcontrib>Prussia, Gregory A.</creatorcontrib><creatorcontrib>LeVan, Axl X.</creatorcontrib><creatorcontrib>Raugei, Simone</creatorcontrib><creatorcontrib>Seefeldt, Lance C.</creatorcontrib><creatorcontrib>Peters, John W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase</title><title>The Journal of biological chemistry</title><description>Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. Lastly, these results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.</description><subject>[8Fe-7S] cluster</subject><subject>computational biology</subject><subject>enzyme structure</subject><subject>MATERIALS SCIENCE</subject><subject>metalloprotein</subject><subject>nitrogen fixation</subject><subject>nitrogen reduction</subject><subject>nitrogenase</subject><subject>oxidation-reduction (redox)</subject><subject>P-cluster of MoFe protein</subject><subject>poised states</subject><subject>redox mediators</subject><subject>redox-dependent ligand exchange</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNij0LwjAURYMoWD_-Q3CVQNK0tJ1FcRR00KmE56uN1ASS18Vfbwu6e4d74Zw7YYmSpRY6V9cpS6RMlajSvJyzRYxPOSSrVMJuZwo9UB9Mx6E1wQBhsG9D1jvuG04t8pPacusG_sK7NYQ80tg_K6Dr42BH4CwF_0BnIq7YrDFdxPV3l2xz2F92R-Ej2TqCJYQWvHMIVKuiSEud6b9OH5_bQ7M</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Keable, Stephen M.</creator><creator>Zadvornyy, Oleg A.</creator><creator>Johnson, Lewis E.</creator><creator>Ginovska, Bojana</creator><creator>Rasmussen, Andrew J.</creator><creator>Danyal, Karamatullah</creator><creator>Eilers, Brian J.</creator><creator>Prussia, Gregory A.</creator><creator>LeVan, Axl X.</creator><creator>Raugei, Simone</creator><creator>Seefeldt, Lance C.</creator><creator>Peters, John W.</creator><general>Elsevier</general><scope>OTOTI</scope></search><sort><creationdate>20180601</creationdate><title>Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase</title><author>Keable, Stephen M. ; Zadvornyy, Oleg A. ; Johnson, Lewis E. ; Ginovska, Bojana ; Rasmussen, Andrew J. ; Danyal, Karamatullah ; Eilers, Brian J. ; Prussia, Gregory A. ; LeVan, Axl X. ; Raugei, Simone ; Seefeldt, Lance C. ; Peters, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17728343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>[8Fe-7S] cluster</topic><topic>computational biology</topic><topic>enzyme structure</topic><topic>MATERIALS SCIENCE</topic><topic>metalloprotein</topic><topic>nitrogen fixation</topic><topic>nitrogen reduction</topic><topic>nitrogenase</topic><topic>oxidation-reduction (redox)</topic><topic>P-cluster of MoFe protein</topic><topic>poised states</topic><topic>redox mediators</topic><topic>redox-dependent ligand exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keable, Stephen M.</creatorcontrib><creatorcontrib>Zadvornyy, Oleg A.</creatorcontrib><creatorcontrib>Johnson, Lewis E.</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><creatorcontrib>Rasmussen, Andrew J.</creatorcontrib><creatorcontrib>Danyal, Karamatullah</creatorcontrib><creatorcontrib>Eilers, Brian J.</creatorcontrib><creatorcontrib>Prussia, Gregory A.</creatorcontrib><creatorcontrib>LeVan, Axl X.</creatorcontrib><creatorcontrib>Raugei, Simone</creatorcontrib><creatorcontrib>Seefeldt, Lance C.</creatorcontrib><creatorcontrib>Peters, John W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keable, Stephen M.</au><au>Zadvornyy, Oleg A.</au><au>Johnson, Lewis E.</au><au>Ginovska, Bojana</au><au>Rasmussen, Andrew J.</au><au>Danyal, Karamatullah</au><au>Eilers, Brian J.</au><au>Prussia, Gregory A.</au><au>LeVan, Axl X.</au><au>Raugei, Simone</au><au>Seefeldt, Lance C.</au><au>Peters, John W.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>293</volume><issue>25</issue><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. Lastly, these results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.</abstract><cop>United States</cop><pub>Elsevier</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2018-06, Vol.293 (25) |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_osti_scitechconnect_1772834 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | [8Fe-7S] cluster computational biology enzyme structure MATERIALS SCIENCE metalloprotein nitrogen fixation nitrogen reduction nitrogenase oxidation-reduction (redox) P-cluster of MoFe protein poised states redox mediators redox-dependent ligand exchange |
title | Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20characterization%20of%20the%20P1+%20intermediate%20state%20of%20the%20P-cluster%20of%20nitrogenase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Keable,%20Stephen%20M.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2018-06-01&rft.volume=293&rft.issue=25&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/&rft_dat=%3Costi%3E1772834%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |