Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase

Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2018-06, Vol.293 (25)
Hauptverfasser: Keable, Stephen M., Zadvornyy, Oleg A., Johnson, Lewis E., Ginovska, Bojana, Rasmussen, Andrew J., Danyal, Karamatullah, Eilers, Brian J., Prussia, Gregory A., LeVan, Axl X., Raugei, Simone, Seefeldt, Lance C., Peters, John W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page
container_title The Journal of biological chemistry
container_volume 293
creator Keable, Stephen M.
Zadvornyy, Oleg A.
Johnson, Lewis E.
Ginovska, Bojana
Rasmussen, Andrew J.
Danyal, Karamatullah
Eilers, Brian J.
Prussia, Gregory A.
LeVan, Axl X.
Raugei, Simone
Seefeldt, Lance C.
Peters, John W.
description Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. Lastly, these results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1772834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1772834</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17728343</originalsourceid><addsrcrecordid>eNqNij0LwjAURYMoWD_-Q3CVQNK0tJ1FcRR00KmE56uN1ASS18Vfbwu6e4d74Zw7YYmSpRY6V9cpS6RMlajSvJyzRYxPOSSrVMJuZwo9UB9Mx6E1wQBhsG9D1jvuG04t8pPacusG_sK7NYQ80tg_K6Dr42BH4CwF_0BnIq7YrDFdxPV3l2xz2F92R-Ej2TqCJYQWvHMIVKuiSEud6b9OH5_bQ7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Keable, Stephen M. ; Zadvornyy, Oleg A. ; Johnson, Lewis E. ; Ginovska, Bojana ; Rasmussen, Andrew J. ; Danyal, Karamatullah ; Eilers, Brian J. ; Prussia, Gregory A. ; LeVan, Axl X. ; Raugei, Simone ; Seefeldt, Lance C. ; Peters, John W.</creator><creatorcontrib>Keable, Stephen M. ; Zadvornyy, Oleg A. ; Johnson, Lewis E. ; Ginovska, Bojana ; Rasmussen, Andrew J. ; Danyal, Karamatullah ; Eilers, Brian J. ; Prussia, Gregory A. ; LeVan, Axl X. ; Raugei, Simone ; Seefeldt, Lance C. ; Peters, John W. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. Lastly, these results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>[8Fe-7S] cluster ; computational biology ; enzyme structure ; MATERIALS SCIENCE ; metalloprotein ; nitrogen fixation ; nitrogen reduction ; nitrogenase ; oxidation-reduction (redox) ; P-cluster of MoFe protein ; poised states ; redox mediators ; redox-dependent ligand exchange</subject><ispartof>The Journal of biological chemistry, 2018-06, Vol.293 (25)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1772834$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Keable, Stephen M.</creatorcontrib><creatorcontrib>Zadvornyy, Oleg A.</creatorcontrib><creatorcontrib>Johnson, Lewis E.</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><creatorcontrib>Rasmussen, Andrew J.</creatorcontrib><creatorcontrib>Danyal, Karamatullah</creatorcontrib><creatorcontrib>Eilers, Brian J.</creatorcontrib><creatorcontrib>Prussia, Gregory A.</creatorcontrib><creatorcontrib>LeVan, Axl X.</creatorcontrib><creatorcontrib>Raugei, Simone</creatorcontrib><creatorcontrib>Seefeldt, Lance C.</creatorcontrib><creatorcontrib>Peters, John W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase</title><title>The Journal of biological chemistry</title><description>Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. Lastly, these results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.</description><subject>[8Fe-7S] cluster</subject><subject>computational biology</subject><subject>enzyme structure</subject><subject>MATERIALS SCIENCE</subject><subject>metalloprotein</subject><subject>nitrogen fixation</subject><subject>nitrogen reduction</subject><subject>nitrogenase</subject><subject>oxidation-reduction (redox)</subject><subject>P-cluster of MoFe protein</subject><subject>poised states</subject><subject>redox mediators</subject><subject>redox-dependent ligand exchange</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNij0LwjAURYMoWD_-Q3CVQNK0tJ1FcRR00KmE56uN1ASS18Vfbwu6e4d74Zw7YYmSpRY6V9cpS6RMlajSvJyzRYxPOSSrVMJuZwo9UB9Mx6E1wQBhsG9D1jvuG04t8pPacusG_sK7NYQ80tg_K6Dr42BH4CwF_0BnIq7YrDFdxPV3l2xz2F92R-Ej2TqCJYQWvHMIVKuiSEud6b9OH5_bQ7M</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Keable, Stephen M.</creator><creator>Zadvornyy, Oleg A.</creator><creator>Johnson, Lewis E.</creator><creator>Ginovska, Bojana</creator><creator>Rasmussen, Andrew J.</creator><creator>Danyal, Karamatullah</creator><creator>Eilers, Brian J.</creator><creator>Prussia, Gregory A.</creator><creator>LeVan, Axl X.</creator><creator>Raugei, Simone</creator><creator>Seefeldt, Lance C.</creator><creator>Peters, John W.</creator><general>Elsevier</general><scope>OTOTI</scope></search><sort><creationdate>20180601</creationdate><title>Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase</title><author>Keable, Stephen M. ; Zadvornyy, Oleg A. ; Johnson, Lewis E. ; Ginovska, Bojana ; Rasmussen, Andrew J. ; Danyal, Karamatullah ; Eilers, Brian J. ; Prussia, Gregory A. ; LeVan, Axl X. ; Raugei, Simone ; Seefeldt, Lance C. ; Peters, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17728343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>[8Fe-7S] cluster</topic><topic>computational biology</topic><topic>enzyme structure</topic><topic>MATERIALS SCIENCE</topic><topic>metalloprotein</topic><topic>nitrogen fixation</topic><topic>nitrogen reduction</topic><topic>nitrogenase</topic><topic>oxidation-reduction (redox)</topic><topic>P-cluster of MoFe protein</topic><topic>poised states</topic><topic>redox mediators</topic><topic>redox-dependent ligand exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keable, Stephen M.</creatorcontrib><creatorcontrib>Zadvornyy, Oleg A.</creatorcontrib><creatorcontrib>Johnson, Lewis E.</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><creatorcontrib>Rasmussen, Andrew J.</creatorcontrib><creatorcontrib>Danyal, Karamatullah</creatorcontrib><creatorcontrib>Eilers, Brian J.</creatorcontrib><creatorcontrib>Prussia, Gregory A.</creatorcontrib><creatorcontrib>LeVan, Axl X.</creatorcontrib><creatorcontrib>Raugei, Simone</creatorcontrib><creatorcontrib>Seefeldt, Lance C.</creatorcontrib><creatorcontrib>Peters, John W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keable, Stephen M.</au><au>Zadvornyy, Oleg A.</au><au>Johnson, Lewis E.</au><au>Ginovska, Bojana</au><au>Rasmussen, Andrew J.</au><au>Danyal, Karamatullah</au><au>Eilers, Brian J.</au><au>Prussia, Gregory A.</au><au>LeVan, Axl X.</au><au>Raugei, Simone</au><au>Seefeldt, Lance C.</au><au>Peters, John W.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>293</volume><issue>25</issue><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum–iron protein (MoFe protein) that contains the iron–molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3. The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. Lastly, these results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.</abstract><cop>United States</cop><pub>Elsevier</pub></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2018-06, Vol.293 (25)
issn 0021-9258
1083-351X
language eng
recordid cdi_osti_scitechconnect_1772834
source EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects [8Fe-7S] cluster
computational biology
enzyme structure
MATERIALS SCIENCE
metalloprotein
nitrogen fixation
nitrogen reduction
nitrogenase
oxidation-reduction (redox)
P-cluster of MoFe protein
poised states
redox mediators
redox-dependent ligand exchange
title Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20characterization%20of%20the%20P1+%20intermediate%20state%20of%20the%20P-cluster%20of%20nitrogenase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Keable,%20Stephen%20M.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2018-06-01&rft.volume=293&rft.issue=25&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/&rft_dat=%3Costi%3E1772834%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true