Divertor heat flux challenge and mitigation in SPARC

Owing to its high magnetic field, high power, and compact size, the SPARC experiment will operate with divertor conditions at or above those expected in reactor-class tokamaks. Power exhaust at this scale remains one of the key challenges for practical fusion energy. Based on empirical scalings, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2020-10, Vol.86 (5), Article 865860505
Hauptverfasser: Kuang, A. Q., Ballinger, S., Brunner, D., Canik, J., Creely, A. J., Gray, T., Greenwald, M., Hughes, J. W., Irby, J., LaBombard, B., Lipschultz, B., Lore, J. D., Reinke, M. L., Terry, J. L., Umansky, M., Whyte, D. G., Wukitch, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of plasma physics
container_volume 86
creator Kuang, A. Q.
Ballinger, S.
Brunner, D.
Canik, J.
Creely, A. J.
Gray, T.
Greenwald, M.
Hughes, J. W.
Irby, J.
LaBombard, B.
Lipschultz, B.
Lore, J. D.
Reinke, M. L.
Terry, J. L.
Umansky, M.
Whyte, D. G.
Wukitch, S.
description Owing to its high magnetic field, high power, and compact size, the SPARC experiment will operate with divertor conditions at or above those expected in reactor-class tokamaks. Power exhaust at this scale remains one of the key challenges for practical fusion energy. Based on empirical scalings, the peak unmitigated divertor parallel heat flux is projected to be greater than 10 GW m−2. This is nearly an order of magnitude higher than has been demonstrated to date. Furthermore, the divertor parallel Edge-Localized Mode (ELM) energy fluence projections (~11–34 MJ m−2) are comparable with those for ITER. However, the relatively short pulse length (~25 s pulse, with a ~10 s flat top) provides the opportunity to consider mitigation schemes unsuited to long-pulse devices including ITER and reactors. The baseline scenario for SPARC employs a ~1 Hz strike point sweep to spread the heat flux over a large divertor target surface area to keep tile surface temperatures within tolerable levels without the use of active divertor cooling systems. In addition, SPARC operation presents a unique opportunity to study divertor heat exhaust mitigation at reactor-level plasma densities and power fluxes. Not only will SPARC test the limits of current experimental scalings and serve for benchmarking theoretical models in reactor regimes, it is also being designed to enable the assessment of long-legged and X-point target advanced divertor magnetic configurations. Experimental results from SPARC will be crucial to reducing risk for a fusion pilot plant divertor design.
doi_str_mv 10.1017/S0022377820001117
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1772637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377820001117</cupid><sourcerecordid>2446897851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-2f145c421bb4d9154cfc70e47733e138464071c4bcdfe8a71e07e5c3e50279573</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLeg5-i-3U1eeiz1LxQUq-dls3lpt6RJ3d2KfnsTKngQT3OY3wzDMHYO_Ao44PWCcyEkYiE45wCAB2wEKp-kWHA8ZKPBTgf_mJ2EsO4hyQWOmLpxH-Rj55MVmZjUze4zsSvTNNQuKTFtlWxcdEsTXdcmrk0Wz9OX2Sk7qk0T6OxHx-zt7vZ19pDOn-4fZ9N5apXMYipqUJlVAspSVRPIlK0tclKIUhLIQuWKI1hV2qqmwiAQR8qspKyfNslQjtnFvrcL0elgXSS7sl3bko0aEEUuB-hyD219976jEPW62_m236WFUnkxwSKDnoI9ZX0Xgqdab73bGP-lgevhQf3nwT4jfzJmU3pXLem3-v_UN4eKbxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446897851</pqid></control><display><type>article</type><title>Divertor heat flux challenge and mitigation in SPARC</title><source>Cambridge University Press Journals Complete</source><creator>Kuang, A. Q. ; Ballinger, S. ; Brunner, D. ; Canik, J. ; Creely, A. J. ; Gray, T. ; Greenwald, M. ; Hughes, J. W. ; Irby, J. ; LaBombard, B. ; Lipschultz, B. ; Lore, J. D. ; Reinke, M. L. ; Terry, J. L. ; Umansky, M. ; Whyte, D. G. ; Wukitch, S.</creator><creatorcontrib>Kuang, A. Q. ; Ballinger, S. ; Brunner, D. ; Canik, J. ; Creely, A. J. ; Gray, T. ; Greenwald, M. ; Hughes, J. W. ; Irby, J. ; LaBombard, B. ; Lipschultz, B. ; Lore, J. D. ; Reinke, M. L. ; Terry, J. L. ; Umansky, M. ; Whyte, D. G. ; Wukitch, S. ; the SPARC Team ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Owing to its high magnetic field, high power, and compact size, the SPARC experiment will operate with divertor conditions at or above those expected in reactor-class tokamaks. Power exhaust at this scale remains one of the key challenges for practical fusion energy. Based on empirical scalings, the peak unmitigated divertor parallel heat flux is projected to be greater than 10 GW m−2. This is nearly an order of magnitude higher than has been demonstrated to date. Furthermore, the divertor parallel Edge-Localized Mode (ELM) energy fluence projections (~11–34 MJ m−2) are comparable with those for ITER. However, the relatively short pulse length (~25 s pulse, with a ~10 s flat top) provides the opportunity to consider mitigation schemes unsuited to long-pulse devices including ITER and reactors. The baseline scenario for SPARC employs a ~1 Hz strike point sweep to spread the heat flux over a large divertor target surface area to keep tile surface temperatures within tolerable levels without the use of active divertor cooling systems. In addition, SPARC operation presents a unique opportunity to study divertor heat exhaust mitigation at reactor-level plasma densities and power fluxes. Not only will SPARC test the limits of current experimental scalings and serve for benchmarking theoretical models in reactor regimes, it is also being designed to enable the assessment of long-legged and X-point target advanced divertor magnetic configurations. Experimental results from SPARC will be crucial to reducing risk for a fusion pilot plant divertor design.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377820001117</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Cooling systems ; Design ; Fluctuations ; Fluence ; fusion plasma ; Heat flux ; Heat transfer ; Magnetic fields ; Plasma ; plasma devices ; Plasma physics ; Reactors ; Risk management ; Risk reduction ; Status of the SPARC Physics Basis ; Surface temperature ; Tokamak devices</subject><ispartof>Journal of plasma physics, 2020-10, Vol.86 (5), Article 865860505</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press</rights><rights>2020 This article is published under (http://creativecommons.org/licenses/by-nc-nd/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-2f145c421bb4d9154cfc70e47733e138464071c4bcdfe8a71e07e5c3e50279573</citedby><cites>FETCH-LOGICAL-c435t-2f145c421bb4d9154cfc70e47733e138464071c4bcdfe8a71e07e5c3e50279573</cites><orcidid>0000-0003-4802-4944 ; 0000-0002-8917-2911 ; 0000-0002-4438-729X ; 0000-0002-4464-150X ; 0000000169346681 ; 000000029192465X ; 0000000289172911 ; 0000000182208195 ; 0000000344139613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377820001117/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1772637$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuang, A. Q.</creatorcontrib><creatorcontrib>Ballinger, S.</creatorcontrib><creatorcontrib>Brunner, D.</creatorcontrib><creatorcontrib>Canik, J.</creatorcontrib><creatorcontrib>Creely, A. J.</creatorcontrib><creatorcontrib>Gray, T.</creatorcontrib><creatorcontrib>Greenwald, M.</creatorcontrib><creatorcontrib>Hughes, J. W.</creatorcontrib><creatorcontrib>Irby, J.</creatorcontrib><creatorcontrib>LaBombard, B.</creatorcontrib><creatorcontrib>Lipschultz, B.</creatorcontrib><creatorcontrib>Lore, J. D.</creatorcontrib><creatorcontrib>Reinke, M. L.</creatorcontrib><creatorcontrib>Terry, J. L.</creatorcontrib><creatorcontrib>Umansky, M.</creatorcontrib><creatorcontrib>Whyte, D. G.</creatorcontrib><creatorcontrib>Wukitch, S.</creatorcontrib><creatorcontrib>the SPARC Team</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Divertor heat flux challenge and mitigation in SPARC</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Owing to its high magnetic field, high power, and compact size, the SPARC experiment will operate with divertor conditions at or above those expected in reactor-class tokamaks. Power exhaust at this scale remains one of the key challenges for practical fusion energy. Based on empirical scalings, the peak unmitigated divertor parallel heat flux is projected to be greater than 10 GW m−2. This is nearly an order of magnitude higher than has been demonstrated to date. Furthermore, the divertor parallel Edge-Localized Mode (ELM) energy fluence projections (~11–34 MJ m−2) are comparable with those for ITER. However, the relatively short pulse length (~25 s pulse, with a ~10 s flat top) provides the opportunity to consider mitigation schemes unsuited to long-pulse devices including ITER and reactors. The baseline scenario for SPARC employs a ~1 Hz strike point sweep to spread the heat flux over a large divertor target surface area to keep tile surface temperatures within tolerable levels without the use of active divertor cooling systems. In addition, SPARC operation presents a unique opportunity to study divertor heat exhaust mitigation at reactor-level plasma densities and power fluxes. Not only will SPARC test the limits of current experimental scalings and serve for benchmarking theoretical models in reactor regimes, it is also being designed to enable the assessment of long-legged and X-point target advanced divertor magnetic configurations. Experimental results from SPARC will be crucial to reducing risk for a fusion pilot plant divertor design.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Cooling systems</subject><subject>Design</subject><subject>Fluctuations</subject><subject>Fluence</subject><subject>fusion plasma</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Magnetic fields</subject><subject>Plasma</subject><subject>plasma devices</subject><subject>Plasma physics</subject><subject>Reactors</subject><subject>Risk management</subject><subject>Risk reduction</subject><subject>Status of the SPARC Physics Basis</subject><subject>Surface temperature</subject><subject>Tokamak devices</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9Lw0AUxBdRsFY_gLeg5-i-3U1eeiz1LxQUq-dls3lpt6RJ3d2KfnsTKngQT3OY3wzDMHYO_Ao44PWCcyEkYiE45wCAB2wEKp-kWHA8ZKPBTgf_mJ2EsO4hyQWOmLpxH-Rj55MVmZjUze4zsSvTNNQuKTFtlWxcdEsTXdcmrk0Wz9OX2Sk7qk0T6OxHx-zt7vZ19pDOn-4fZ9N5apXMYipqUJlVAspSVRPIlK0tclKIUhLIQuWKI1hV2qqmwiAQR8qspKyfNslQjtnFvrcL0elgXSS7sl3bko0aEEUuB-hyD219976jEPW62_m236WFUnkxwSKDnoI9ZX0Xgqdab73bGP-lgevhQf3nwT4jfzJmU3pXLem3-v_UN4eKbxE</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Kuang, A. Q.</creator><creator>Ballinger, S.</creator><creator>Brunner, D.</creator><creator>Canik, J.</creator><creator>Creely, A. J.</creator><creator>Gray, T.</creator><creator>Greenwald, M.</creator><creator>Hughes, J. W.</creator><creator>Irby, J.</creator><creator>LaBombard, B.</creator><creator>Lipschultz, B.</creator><creator>Lore, J. D.</creator><creator>Reinke, M. L.</creator><creator>Terry, J. L.</creator><creator>Umansky, M.</creator><creator>Whyte, D. G.</creator><creator>Wukitch, S.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4802-4944</orcidid><orcidid>https://orcid.org/0000-0002-8917-2911</orcidid><orcidid>https://orcid.org/0000-0002-4438-729X</orcidid><orcidid>https://orcid.org/0000-0002-4464-150X</orcidid><orcidid>https://orcid.org/0000000169346681</orcidid><orcidid>https://orcid.org/000000029192465X</orcidid><orcidid>https://orcid.org/0000000289172911</orcidid><orcidid>https://orcid.org/0000000182208195</orcidid><orcidid>https://orcid.org/0000000344139613</orcidid></search><sort><creationdate>20201001</creationdate><title>Divertor heat flux challenge and mitigation in SPARC</title><author>Kuang, A. Q. ; Ballinger, S. ; Brunner, D. ; Canik, J. ; Creely, A. J. ; Gray, T. ; Greenwald, M. ; Hughes, J. W. ; Irby, J. ; LaBombard, B. ; Lipschultz, B. ; Lore, J. D. ; Reinke, M. L. ; Terry, J. L. ; Umansky, M. ; Whyte, D. G. ; Wukitch, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-2f145c421bb4d9154cfc70e47733e138464071c4bcdfe8a71e07e5c3e50279573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Cooling systems</topic><topic>Design</topic><topic>Fluctuations</topic><topic>Fluence</topic><topic>fusion plasma</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Magnetic fields</topic><topic>Plasma</topic><topic>plasma devices</topic><topic>Plasma physics</topic><topic>Reactors</topic><topic>Risk management</topic><topic>Risk reduction</topic><topic>Status of the SPARC Physics Basis</topic><topic>Surface temperature</topic><topic>Tokamak devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, A. Q.</creatorcontrib><creatorcontrib>Ballinger, S.</creatorcontrib><creatorcontrib>Brunner, D.</creatorcontrib><creatorcontrib>Canik, J.</creatorcontrib><creatorcontrib>Creely, A. J.</creatorcontrib><creatorcontrib>Gray, T.</creatorcontrib><creatorcontrib>Greenwald, M.</creatorcontrib><creatorcontrib>Hughes, J. W.</creatorcontrib><creatorcontrib>Irby, J.</creatorcontrib><creatorcontrib>LaBombard, B.</creatorcontrib><creatorcontrib>Lipschultz, B.</creatorcontrib><creatorcontrib>Lore, J. D.</creatorcontrib><creatorcontrib>Reinke, M. L.</creatorcontrib><creatorcontrib>Terry, J. L.</creatorcontrib><creatorcontrib>Umansky, M.</creatorcontrib><creatorcontrib>Whyte, D. G.</creatorcontrib><creatorcontrib>Wukitch, S.</creatorcontrib><creatorcontrib>the SPARC Team</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, A. Q.</au><au>Ballinger, S.</au><au>Brunner, D.</au><au>Canik, J.</au><au>Creely, A. J.</au><au>Gray, T.</au><au>Greenwald, M.</au><au>Hughes, J. W.</au><au>Irby, J.</au><au>LaBombard, B.</au><au>Lipschultz, B.</au><au>Lore, J. D.</au><au>Reinke, M. L.</au><au>Terry, J. L.</au><au>Umansky, M.</au><au>Whyte, D. G.</au><au>Wukitch, S.</au><aucorp>the SPARC Team</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divertor heat flux challenge and mitigation in SPARC</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>86</volume><issue>5</issue><artnum>865860505</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>Owing to its high magnetic field, high power, and compact size, the SPARC experiment will operate with divertor conditions at or above those expected in reactor-class tokamaks. Power exhaust at this scale remains one of the key challenges for practical fusion energy. Based on empirical scalings, the peak unmitigated divertor parallel heat flux is projected to be greater than 10 GW m−2. This is nearly an order of magnitude higher than has been demonstrated to date. Furthermore, the divertor parallel Edge-Localized Mode (ELM) energy fluence projections (~11–34 MJ m−2) are comparable with those for ITER. However, the relatively short pulse length (~25 s pulse, with a ~10 s flat top) provides the opportunity to consider mitigation schemes unsuited to long-pulse devices including ITER and reactors. The baseline scenario for SPARC employs a ~1 Hz strike point sweep to spread the heat flux over a large divertor target surface area to keep tile surface temperatures within tolerable levels without the use of active divertor cooling systems. In addition, SPARC operation presents a unique opportunity to study divertor heat exhaust mitigation at reactor-level plasma densities and power fluxes. Not only will SPARC test the limits of current experimental scalings and serve for benchmarking theoretical models in reactor regimes, it is also being designed to enable the assessment of long-legged and X-point target advanced divertor magnetic configurations. Experimental results from SPARC will be crucial to reducing risk for a fusion pilot plant divertor design.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377820001117</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-4802-4944</orcidid><orcidid>https://orcid.org/0000-0002-8917-2911</orcidid><orcidid>https://orcid.org/0000-0002-4438-729X</orcidid><orcidid>https://orcid.org/0000-0002-4464-150X</orcidid><orcidid>https://orcid.org/0000000169346681</orcidid><orcidid>https://orcid.org/000000029192465X</orcidid><orcidid>https://orcid.org/0000000289172911</orcidid><orcidid>https://orcid.org/0000000182208195</orcidid><orcidid>https://orcid.org/0000000344139613</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2020-10, Vol.86 (5), Article 865860505
issn 0022-3778
1469-7807
language eng
recordid cdi_osti_scitechconnect_1772637
source Cambridge University Press Journals Complete
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Cooling systems
Design
Fluctuations
Fluence
fusion plasma
Heat flux
Heat transfer
Magnetic fields
Plasma
plasma devices
Plasma physics
Reactors
Risk management
Risk reduction
Status of the SPARC Physics Basis
Surface temperature
Tokamak devices
title Divertor heat flux challenge and mitigation in SPARC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divertor%20heat%20flux%20challenge%20and%20mitigation%20in%20SPARC&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Kuang,%20A.%20Q.&rft.aucorp=the%20SPARC%20Team&rft.date=2020-10-01&rft.volume=86&rft.issue=5&rft.artnum=865860505&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377820001117&rft_dat=%3Cproquest_osti_%3E2446897851%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446897851&rft_id=info:pmid/&rft_cupid=10_1017_S0022377820001117&rfr_iscdi=true