Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene

The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-03, Vol.143 (11), p.4213-4223
Hauptverfasser: Bhaskar, Gourab, Gvozdetskyi, Volodymyr, Batuk, Maria, Wiaderek, Kamila M., Sun, Yang, Wang, Renhai, Zhang, Chao, Carnahan, Scott L., Wu, Xun, Ribeiro, Raquel A., Bud’ko, Sergey L., Canfield, Paul C., Huang, Wenyu, Rossini, Aaron J., Wang, Cai-Zhuang, Ho, Kai-Ming, Hadermann, Joke, Zaikina, Julia V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4223
container_issue 11
container_start_page 4213
container_title Journal of the American Chemical Society
container_volume 143
creator Bhaskar, Gourab
Gvozdetskyi, Volodymyr
Batuk, Maria
Wiaderek, Kamila M.
Sun, Yang
Wang, Renhai
Zhang, Chao
Carnahan, Scott L.
Wu, Xun
Ribeiro, Raquel A.
Bud’ko, Sergey L.
Canfield, Paul C.
Huang, Wenyu
Rossini, Aaron J.
Wang, Cai-Zhuang
Ho, Kai-Ming
Hadermann, Joke
Zaikina, Julia V.
description The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li­[NiB]2 and Li­[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).
doi_str_mv 10.1021/jacs.0c11397
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1772549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501476378</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-b33c5b975a284d2c5f0d5cfebcef166b143d6c5042f15611b153fb5cbb9e82fd3</originalsourceid><addsrcrecordid>eNptkLtPwzAQhy0EouWxMaOIiYEUnx3nwUbLUyqwlNmynbPqqomLnQrx35OqBRamu5O--93pI-QM6Agog-uFMnFEDQCvij0yBMFoKoDl-2RIKWVpUeZ8QI5iXPRjxko4JAPOC6gyng_Jw8yvvJlj44xaJnfo2g5D36rO-TbxNpm6xAbfJFP1hQHrfn5145uk858q1Am7S17G2OIJObBqGfF0V4_J-8P9bPKUTt8enye301TxsupSzbkRuiqEYmVWMyMsrYWxqA1ayHMNGa9zI_o3LYgcQIPgVgujdYUlszU_JhfbXB87J6NxHZq58W2LppNQFExkVQ9dbqFV8B9rjJ1sXDS4XKoW_TpKJihkRc6LskevtqgJPsaAVq6Ca1T4kkDlRq_c6JU7vT1-vkte6wbrX_jH59_pzdbCr0Pb2_g_6xuXxIFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501476378</pqid></control><display><type>article</type><title>Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene</title><source>American Chemical Society Journals</source><creator>Bhaskar, Gourab ; Gvozdetskyi, Volodymyr ; Batuk, Maria ; Wiaderek, Kamila M. ; Sun, Yang ; Wang, Renhai ; Zhang, Chao ; Carnahan, Scott L. ; Wu, Xun ; Ribeiro, Raquel A. ; Bud’ko, Sergey L. ; Canfield, Paul C. ; Huang, Wenyu ; Rossini, Aaron J. ; Wang, Cai-Zhuang ; Ho, Kai-Ming ; Hadermann, Joke ; Zaikina, Julia V.</creator><creatorcontrib>Bhaskar, Gourab ; Gvozdetskyi, Volodymyr ; Batuk, Maria ; Wiaderek, Kamila M. ; Sun, Yang ; Wang, Renhai ; Zhang, Chao ; Carnahan, Scott L. ; Wu, Xun ; Ribeiro, Raquel A. ; Bud’ko, Sergey L. ; Canfield, Paul C. ; Huang, Wenyu ; Rossini, Aaron J. ; Wang, Cai-Zhuang ; Ho, Kai-Ming ; Hadermann, Joke ; Zaikina, Julia V. ; Iowa State Univ., Ames, IA (United States) ; Ames Lab., Ames, IA (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li­[NiB]2 and Li­[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c11397</identifier><identifier>PMID: 33719436</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical structure ; Crystal structure ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Layers ; Scanning transmission electron microscopy ; X-rays</subject><ispartof>Journal of the American Chemical Society, 2021-03, Vol.143 (11), p.4213-4223</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-b33c5b975a284d2c5f0d5cfebcef166b143d6c5042f15611b153fb5cbb9e82fd3</citedby><cites>FETCH-LOGICAL-a389t-b33c5b975a284d2c5f0d5cfebcef166b143d6c5042f15611b153fb5cbb9e82fd3</cites><orcidid>0000-0002-8755-1926 ; 0000-0003-4539-9273 ; 0000-0002-0269-4785 ; 0000-0002-1756-2566 ; 0000-0003-1411-9785 ; 0000-0002-1679-9203 ; 0000-0002-5957-2287 ; 0000-0003-2327-7259 ; 0000000345399273 ; 0000000287551926 ; 0000000202694785 ; 0000000217562566 ; 0000000314119785 ; 0000000259572287 ; 0000000323277259 ; 0000000216799203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c11397$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c11397$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33719436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1772549$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhaskar, Gourab</creatorcontrib><creatorcontrib>Gvozdetskyi, Volodymyr</creatorcontrib><creatorcontrib>Batuk, Maria</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Wang, Renhai</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Carnahan, Scott L.</creatorcontrib><creatorcontrib>Wu, Xun</creatorcontrib><creatorcontrib>Ribeiro, Raquel A.</creatorcontrib><creatorcontrib>Bud’ko, Sergey L.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>Huang, Wenyu</creatorcontrib><creatorcontrib>Rossini, Aaron J.</creatorcontrib><creatorcontrib>Wang, Cai-Zhuang</creatorcontrib><creatorcontrib>Ho, Kai-Ming</creatorcontrib><creatorcontrib>Hadermann, Joke</creatorcontrib><creatorcontrib>Zaikina, Julia V.</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li­[NiB]2 and Li­[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).</description><subject>Chemical structure</subject><subject>Crystal structure</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Layers</subject><subject>Scanning transmission electron microscopy</subject><subject>X-rays</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkLtPwzAQhy0EouWxMaOIiYEUnx3nwUbLUyqwlNmynbPqqomLnQrx35OqBRamu5O--93pI-QM6Agog-uFMnFEDQCvij0yBMFoKoDl-2RIKWVpUeZ8QI5iXPRjxko4JAPOC6gyng_Jw8yvvJlj44xaJnfo2g5D36rO-TbxNpm6xAbfJFP1hQHrfn5145uk858q1Am7S17G2OIJObBqGfF0V4_J-8P9bPKUTt8enye301TxsupSzbkRuiqEYmVWMyMsrYWxqA1ayHMNGa9zI_o3LYgcQIPgVgujdYUlszU_JhfbXB87J6NxHZq58W2LppNQFExkVQ9dbqFV8B9rjJ1sXDS4XKoW_TpKJihkRc6LskevtqgJPsaAVq6Ca1T4kkDlRq_c6JU7vT1-vkte6wbrX_jH59_pzdbCr0Pb2_g_6xuXxIFY</recordid><startdate>20210324</startdate><enddate>20210324</enddate><creator>Bhaskar, Gourab</creator><creator>Gvozdetskyi, Volodymyr</creator><creator>Batuk, Maria</creator><creator>Wiaderek, Kamila M.</creator><creator>Sun, Yang</creator><creator>Wang, Renhai</creator><creator>Zhang, Chao</creator><creator>Carnahan, Scott L.</creator><creator>Wu, Xun</creator><creator>Ribeiro, Raquel A.</creator><creator>Bud’ko, Sergey L.</creator><creator>Canfield, Paul C.</creator><creator>Huang, Wenyu</creator><creator>Rossini, Aaron J.</creator><creator>Wang, Cai-Zhuang</creator><creator>Ho, Kai-Ming</creator><creator>Hadermann, Joke</creator><creator>Zaikina, Julia V.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8755-1926</orcidid><orcidid>https://orcid.org/0000-0003-4539-9273</orcidid><orcidid>https://orcid.org/0000-0002-0269-4785</orcidid><orcidid>https://orcid.org/0000-0002-1756-2566</orcidid><orcidid>https://orcid.org/0000-0003-1411-9785</orcidid><orcidid>https://orcid.org/0000-0002-1679-9203</orcidid><orcidid>https://orcid.org/0000-0002-5957-2287</orcidid><orcidid>https://orcid.org/0000-0003-2327-7259</orcidid><orcidid>https://orcid.org/0000000345399273</orcidid><orcidid>https://orcid.org/0000000287551926</orcidid><orcidid>https://orcid.org/0000000202694785</orcidid><orcidid>https://orcid.org/0000000217562566</orcidid><orcidid>https://orcid.org/0000000314119785</orcidid><orcidid>https://orcid.org/0000000259572287</orcidid><orcidid>https://orcid.org/0000000323277259</orcidid><orcidid>https://orcid.org/0000000216799203</orcidid></search><sort><creationdate>20210324</creationdate><title>Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene</title><author>Bhaskar, Gourab ; Gvozdetskyi, Volodymyr ; Batuk, Maria ; Wiaderek, Kamila M. ; Sun, Yang ; Wang, Renhai ; Zhang, Chao ; Carnahan, Scott L. ; Wu, Xun ; Ribeiro, Raquel A. ; Bud’ko, Sergey L. ; Canfield, Paul C. ; Huang, Wenyu ; Rossini, Aaron J. ; Wang, Cai-Zhuang ; Ho, Kai-Ming ; Hadermann, Joke ; Zaikina, Julia V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-b33c5b975a284d2c5f0d5cfebcef166b143d6c5042f15611b153fb5cbb9e82fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical structure</topic><topic>Crystal structure</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Layers</topic><topic>Scanning transmission electron microscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhaskar, Gourab</creatorcontrib><creatorcontrib>Gvozdetskyi, Volodymyr</creatorcontrib><creatorcontrib>Batuk, Maria</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Wang, Renhai</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Carnahan, Scott L.</creatorcontrib><creatorcontrib>Wu, Xun</creatorcontrib><creatorcontrib>Ribeiro, Raquel A.</creatorcontrib><creatorcontrib>Bud’ko, Sergey L.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>Huang, Wenyu</creatorcontrib><creatorcontrib>Rossini, Aaron J.</creatorcontrib><creatorcontrib>Wang, Cai-Zhuang</creatorcontrib><creatorcontrib>Ho, Kai-Ming</creatorcontrib><creatorcontrib>Hadermann, Joke</creatorcontrib><creatorcontrib>Zaikina, Julia V.</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhaskar, Gourab</au><au>Gvozdetskyi, Volodymyr</au><au>Batuk, Maria</au><au>Wiaderek, Kamila M.</au><au>Sun, Yang</au><au>Wang, Renhai</au><au>Zhang, Chao</au><au>Carnahan, Scott L.</au><au>Wu, Xun</au><au>Ribeiro, Raquel A.</au><au>Bud’ko, Sergey L.</au><au>Canfield, Paul C.</au><au>Huang, Wenyu</au><au>Rossini, Aaron J.</au><au>Wang, Cai-Zhuang</au><au>Ho, Kai-Ming</au><au>Hadermann, Joke</au><au>Zaikina, Julia V.</au><aucorp>Iowa State Univ., Ames, IA (United States)</aucorp><aucorp>Ames Lab., Ames, IA (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-03-24</date><risdate>2021</risdate><volume>143</volume><issue>11</issue><spage>4213</spage><epage>4223</epage><pages>4213-4223</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li­[NiB]2 and Li­[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33719436</pmid><doi>10.1021/jacs.0c11397</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8755-1926</orcidid><orcidid>https://orcid.org/0000-0003-4539-9273</orcidid><orcidid>https://orcid.org/0000-0002-0269-4785</orcidid><orcidid>https://orcid.org/0000-0002-1756-2566</orcidid><orcidid>https://orcid.org/0000-0003-1411-9785</orcidid><orcidid>https://orcid.org/0000-0002-1679-9203</orcidid><orcidid>https://orcid.org/0000-0002-5957-2287</orcidid><orcidid>https://orcid.org/0000-0003-2327-7259</orcidid><orcidid>https://orcid.org/0000000345399273</orcidid><orcidid>https://orcid.org/0000000287551926</orcidid><orcidid>https://orcid.org/0000000202694785</orcidid><orcidid>https://orcid.org/0000000217562566</orcidid><orcidid>https://orcid.org/0000000314119785</orcidid><orcidid>https://orcid.org/0000000259572287</orcidid><orcidid>https://orcid.org/0000000323277259</orcidid><orcidid>https://orcid.org/0000000216799203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-03, Vol.143 (11), p.4213-4223
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1772549
source American Chemical Society Journals
subjects Chemical structure
Crystal structure
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Layers
Scanning transmission electron microscopy
X-rays
title Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topochemical%20Deintercalation%20of%20Li%20from%20Layered%20LiNiB:%20toward%202D%20MBene&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Bhaskar,%20Gourab&rft.aucorp=Iowa%20State%20Univ.,%20Ames,%20IA%20(United%20States)&rft.date=2021-03-24&rft.volume=143&rft.issue=11&rft.spage=4213&rft.epage=4223&rft.pages=4213-4223&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c11397&rft_dat=%3Cproquest_osti_%3E2501476378%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501476378&rft_id=info:pmid/33719436&rfr_iscdi=true