Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene
The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-03, Vol.143 (11), p.4213-4223 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4223 |
---|---|
container_issue | 11 |
container_start_page | 4213 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Bhaskar, Gourab Gvozdetskyi, Volodymyr Batuk, Maria Wiaderek, Kamila M. Sun, Yang Wang, Renhai Zhang, Chao Carnahan, Scott L. Wu, Xun Ribeiro, Raquel A. Bud’ko, Sergey L. Canfield, Paul C. Huang, Wenyu Rossini, Aaron J. Wang, Cai-Zhuang Ho, Kai-Ming Hadermann, Joke Zaikina, Julia V. |
description | The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB). |
doi_str_mv | 10.1021/jacs.0c11397 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1772549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501476378</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-b33c5b975a284d2c5f0d5cfebcef166b143d6c5042f15611b153fb5cbb9e82fd3</originalsourceid><addsrcrecordid>eNptkLtPwzAQhy0EouWxMaOIiYEUnx3nwUbLUyqwlNmynbPqqomLnQrx35OqBRamu5O--93pI-QM6Agog-uFMnFEDQCvij0yBMFoKoDl-2RIKWVpUeZ8QI5iXPRjxko4JAPOC6gyng_Jw8yvvJlj44xaJnfo2g5D36rO-TbxNpm6xAbfJFP1hQHrfn5145uk858q1Am7S17G2OIJObBqGfF0V4_J-8P9bPKUTt8enye301TxsupSzbkRuiqEYmVWMyMsrYWxqA1ayHMNGa9zI_o3LYgcQIPgVgujdYUlszU_JhfbXB87J6NxHZq58W2LppNQFExkVQ9dbqFV8B9rjJ1sXDS4XKoW_TpKJihkRc6LskevtqgJPsaAVq6Ca1T4kkDlRq_c6JU7vT1-vkte6wbrX_jH59_pzdbCr0Pb2_g_6xuXxIFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501476378</pqid></control><display><type>article</type><title>Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene</title><source>American Chemical Society Journals</source><creator>Bhaskar, Gourab ; Gvozdetskyi, Volodymyr ; Batuk, Maria ; Wiaderek, Kamila M. ; Sun, Yang ; Wang, Renhai ; Zhang, Chao ; Carnahan, Scott L. ; Wu, Xun ; Ribeiro, Raquel A. ; Bud’ko, Sergey L. ; Canfield, Paul C. ; Huang, Wenyu ; Rossini, Aaron J. ; Wang, Cai-Zhuang ; Ho, Kai-Ming ; Hadermann, Joke ; Zaikina, Julia V.</creator><creatorcontrib>Bhaskar, Gourab ; Gvozdetskyi, Volodymyr ; Batuk, Maria ; Wiaderek, Kamila M. ; Sun, Yang ; Wang, Renhai ; Zhang, Chao ; Carnahan, Scott L. ; Wu, Xun ; Ribeiro, Raquel A. ; Bud’ko, Sergey L. ; Canfield, Paul C. ; Huang, Wenyu ; Rossini, Aaron J. ; Wang, Cai-Zhuang ; Ho, Kai-Ming ; Hadermann, Joke ; Zaikina, Julia V. ; Iowa State Univ., Ames, IA (United States) ; Ames Lab., Ames, IA (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c11397</identifier><identifier>PMID: 33719436</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical structure ; Crystal structure ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Layers ; Scanning transmission electron microscopy ; X-rays</subject><ispartof>Journal of the American Chemical Society, 2021-03, Vol.143 (11), p.4213-4223</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-b33c5b975a284d2c5f0d5cfebcef166b143d6c5042f15611b153fb5cbb9e82fd3</citedby><cites>FETCH-LOGICAL-a389t-b33c5b975a284d2c5f0d5cfebcef166b143d6c5042f15611b153fb5cbb9e82fd3</cites><orcidid>0000-0002-8755-1926 ; 0000-0003-4539-9273 ; 0000-0002-0269-4785 ; 0000-0002-1756-2566 ; 0000-0003-1411-9785 ; 0000-0002-1679-9203 ; 0000-0002-5957-2287 ; 0000-0003-2327-7259 ; 0000000345399273 ; 0000000287551926 ; 0000000202694785 ; 0000000217562566 ; 0000000314119785 ; 0000000259572287 ; 0000000323277259 ; 0000000216799203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c11397$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c11397$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33719436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1772549$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhaskar, Gourab</creatorcontrib><creatorcontrib>Gvozdetskyi, Volodymyr</creatorcontrib><creatorcontrib>Batuk, Maria</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Wang, Renhai</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Carnahan, Scott L.</creatorcontrib><creatorcontrib>Wu, Xun</creatorcontrib><creatorcontrib>Ribeiro, Raquel A.</creatorcontrib><creatorcontrib>Bud’ko, Sergey L.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>Huang, Wenyu</creatorcontrib><creatorcontrib>Rossini, Aaron J.</creatorcontrib><creatorcontrib>Wang, Cai-Zhuang</creatorcontrib><creatorcontrib>Ho, Kai-Ming</creatorcontrib><creatorcontrib>Hadermann, Joke</creatorcontrib><creatorcontrib>Zaikina, Julia V.</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).</description><subject>Chemical structure</subject><subject>Crystal structure</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Layers</subject><subject>Scanning transmission electron microscopy</subject><subject>X-rays</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkLtPwzAQhy0EouWxMaOIiYEUnx3nwUbLUyqwlNmynbPqqomLnQrx35OqBRamu5O--93pI-QM6Agog-uFMnFEDQCvij0yBMFoKoDl-2RIKWVpUeZ8QI5iXPRjxko4JAPOC6gyng_Jw8yvvJlj44xaJnfo2g5D36rO-TbxNpm6xAbfJFP1hQHrfn5145uk858q1Am7S17G2OIJObBqGfF0V4_J-8P9bPKUTt8enye301TxsupSzbkRuiqEYmVWMyMsrYWxqA1ayHMNGa9zI_o3LYgcQIPgVgujdYUlszU_JhfbXB87J6NxHZq58W2LppNQFExkVQ9dbqFV8B9rjJ1sXDS4XKoW_TpKJihkRc6LskevtqgJPsaAVq6Ca1T4kkDlRq_c6JU7vT1-vkte6wbrX_jH59_pzdbCr0Pb2_g_6xuXxIFY</recordid><startdate>20210324</startdate><enddate>20210324</enddate><creator>Bhaskar, Gourab</creator><creator>Gvozdetskyi, Volodymyr</creator><creator>Batuk, Maria</creator><creator>Wiaderek, Kamila M.</creator><creator>Sun, Yang</creator><creator>Wang, Renhai</creator><creator>Zhang, Chao</creator><creator>Carnahan, Scott L.</creator><creator>Wu, Xun</creator><creator>Ribeiro, Raquel A.</creator><creator>Bud’ko, Sergey L.</creator><creator>Canfield, Paul C.</creator><creator>Huang, Wenyu</creator><creator>Rossini, Aaron J.</creator><creator>Wang, Cai-Zhuang</creator><creator>Ho, Kai-Ming</creator><creator>Hadermann, Joke</creator><creator>Zaikina, Julia V.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8755-1926</orcidid><orcidid>https://orcid.org/0000-0003-4539-9273</orcidid><orcidid>https://orcid.org/0000-0002-0269-4785</orcidid><orcidid>https://orcid.org/0000-0002-1756-2566</orcidid><orcidid>https://orcid.org/0000-0003-1411-9785</orcidid><orcidid>https://orcid.org/0000-0002-1679-9203</orcidid><orcidid>https://orcid.org/0000-0002-5957-2287</orcidid><orcidid>https://orcid.org/0000-0003-2327-7259</orcidid><orcidid>https://orcid.org/0000000345399273</orcidid><orcidid>https://orcid.org/0000000287551926</orcidid><orcidid>https://orcid.org/0000000202694785</orcidid><orcidid>https://orcid.org/0000000217562566</orcidid><orcidid>https://orcid.org/0000000314119785</orcidid><orcidid>https://orcid.org/0000000259572287</orcidid><orcidid>https://orcid.org/0000000323277259</orcidid><orcidid>https://orcid.org/0000000216799203</orcidid></search><sort><creationdate>20210324</creationdate><title>Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene</title><author>Bhaskar, Gourab ; Gvozdetskyi, Volodymyr ; Batuk, Maria ; Wiaderek, Kamila M. ; Sun, Yang ; Wang, Renhai ; Zhang, Chao ; Carnahan, Scott L. ; Wu, Xun ; Ribeiro, Raquel A. ; Bud’ko, Sergey L. ; Canfield, Paul C. ; Huang, Wenyu ; Rossini, Aaron J. ; Wang, Cai-Zhuang ; Ho, Kai-Ming ; Hadermann, Joke ; Zaikina, Julia V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-b33c5b975a284d2c5f0d5cfebcef166b143d6c5042f15611b153fb5cbb9e82fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical structure</topic><topic>Crystal structure</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Layers</topic><topic>Scanning transmission electron microscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhaskar, Gourab</creatorcontrib><creatorcontrib>Gvozdetskyi, Volodymyr</creatorcontrib><creatorcontrib>Batuk, Maria</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Wang, Renhai</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Carnahan, Scott L.</creatorcontrib><creatorcontrib>Wu, Xun</creatorcontrib><creatorcontrib>Ribeiro, Raquel A.</creatorcontrib><creatorcontrib>Bud’ko, Sergey L.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>Huang, Wenyu</creatorcontrib><creatorcontrib>Rossini, Aaron J.</creatorcontrib><creatorcontrib>Wang, Cai-Zhuang</creatorcontrib><creatorcontrib>Ho, Kai-Ming</creatorcontrib><creatorcontrib>Hadermann, Joke</creatorcontrib><creatorcontrib>Zaikina, Julia V.</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhaskar, Gourab</au><au>Gvozdetskyi, Volodymyr</au><au>Batuk, Maria</au><au>Wiaderek, Kamila M.</au><au>Sun, Yang</au><au>Wang, Renhai</au><au>Zhang, Chao</au><au>Carnahan, Scott L.</au><au>Wu, Xun</au><au>Ribeiro, Raquel A.</au><au>Bud’ko, Sergey L.</au><au>Canfield, Paul C.</au><au>Huang, Wenyu</au><au>Rossini, Aaron J.</au><au>Wang, Cai-Zhuang</au><au>Ho, Kai-Ming</au><au>Hadermann, Joke</au><au>Zaikina, Julia V.</au><aucorp>Iowa State Univ., Ames, IA (United States)</aucorp><aucorp>Ames Lab., Ames, IA (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-03-24</date><risdate>2021</risdate><volume>143</volume><issue>11</issue><spage>4213</spage><epage>4223</epage><pages>4213-4223</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33719436</pmid><doi>10.1021/jacs.0c11397</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8755-1926</orcidid><orcidid>https://orcid.org/0000-0003-4539-9273</orcidid><orcidid>https://orcid.org/0000-0002-0269-4785</orcidid><orcidid>https://orcid.org/0000-0002-1756-2566</orcidid><orcidid>https://orcid.org/0000-0003-1411-9785</orcidid><orcidid>https://orcid.org/0000-0002-1679-9203</orcidid><orcidid>https://orcid.org/0000-0002-5957-2287</orcidid><orcidid>https://orcid.org/0000-0003-2327-7259</orcidid><orcidid>https://orcid.org/0000000345399273</orcidid><orcidid>https://orcid.org/0000000287551926</orcidid><orcidid>https://orcid.org/0000000202694785</orcidid><orcidid>https://orcid.org/0000000217562566</orcidid><orcidid>https://orcid.org/0000000314119785</orcidid><orcidid>https://orcid.org/0000000259572287</orcidid><orcidid>https://orcid.org/0000000323277259</orcidid><orcidid>https://orcid.org/0000000216799203</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-03, Vol.143 (11), p.4213-4223 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1772549 |
source | American Chemical Society Journals |
subjects | Chemical structure Crystal structure INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Layers Scanning transmission electron microscopy X-rays |
title | Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topochemical%20Deintercalation%20of%20Li%20from%20Layered%20LiNiB:%20toward%202D%20MBene&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Bhaskar,%20Gourab&rft.aucorp=Iowa%20State%20Univ.,%20Ames,%20IA%20(United%20States)&rft.date=2021-03-24&rft.volume=143&rft.issue=11&rft.spage=4213&rft.epage=4223&rft.pages=4213-4223&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c11397&rft_dat=%3Cproquest_osti_%3E2501476378%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501476378&rft_id=info:pmid/33719436&rfr_iscdi=true |