Tritium embrittlement of austenitic stainless-steel tubing at low helium contents

Austenitic stainless steels are the standard materials for containment of hydrogen and tritium because of their resistance to mechanical property degradation in those environments. The mechanical performance of the primary containment material is critical for tritium handling, processing, and storag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2021-07, Vol.168, p.112413, Article 112413
Hauptverfasser: Krentz, Timothy M., Ronevich, Joseph A., Balch, Dorian K., Marchi, Chris San
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112413
container_title Fusion engineering and design
container_volume 168
creator Krentz, Timothy M.
Ronevich, Joseph A.
Balch, Dorian K.
Marchi, Chris San
description Austenitic stainless steels are the standard materials for containment of hydrogen and tritium because of their resistance to mechanical property degradation in those environments. The mechanical performance of the primary containment material is critical for tritium handling, processing, and storage, thus comprehensive understanding of the processes of tritium embrittlement is an enabling capability for fusion energy. This work describes the investigation of the effects of low levels of tritium-decay-helium ingrowth on 304 L tubes. Long-term aging with tritium leads to high helium contents in austenitic stainless steels and can reduce fracture toughness by 95 %, but the details of behavior at low helium contents are not as well characterized. Here, we present results from tensile testing of tritium pre-charged 304 L tube specimens with a variety of starting microstructures that all contain a low level of helium. The results of the tritium exposed-and-aged materials are compared to previously reported results on similar specimens tested in an unexposed condition as well as the hydrogen precharged condition. Tritium precharging and aging for a short duration resulted in increased yield strengths, ultimate tensile strengths and slightly increased elongation to failure, comparable to higher concentrations of hydrogen precharging.
doi_str_mv 10.1016/j.fusengdes.2021.112413
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1772033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379621001897</els_id><sourcerecordid>2552119921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f7174e9ed12fff383961ea30f39354ac60adbded9165651365dafd1909a0e3c3</originalsourceid><addsrcrecordid>eNqFkF9LBCEUxSUK2rY-Q0M9z-bVnXF9jKV_EESw7-LqtXWZdUqdom-fw0SvgaBcf-dw7iHkEugCKLQ3-4UbEoY3i2nBKIMFAFsCPyIzWAleC5DtMZlRyWjNhWxPyVlKe0pBlDMjr5vosx8OFR625ZU7PGDIVe8qPaSMoXyaKmXtQ4cp1WWEXZWHrQ9vlc5V139VO-xGA9OHwud0Tk6c7hJe_N5zsrm_26wf6-eXh6f17XNtliBz7QSIJUq0wJxzfMVlC6g5dVzyZqlNS7XdWrQS2qZtgLeN1c6CpFJT5IbPydVk26fsVTI-o9mVDAFNViAEo5wX6HqC3mP_MWDKat8PMZRYijUNA5CSQaHERJnYpxTRqffoDzp-K6Bq7Fjt1V_HauxYTR0X5e2kxLLop8c4BsFg0Po45rC9_9fjB8kpiig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552119921</pqid></control><display><type>article</type><title>Tritium embrittlement of austenitic stainless-steel tubing at low helium contents</title><source>Access via ScienceDirect (Elsevier)</source><creator>Krentz, Timothy M. ; Ronevich, Joseph A. ; Balch, Dorian K. ; Marchi, Chris San</creator><creatorcontrib>Krentz, Timothy M. ; Ronevich, Joseph A. ; Balch, Dorian K. ; Marchi, Chris San ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)</creatorcontrib><description>Austenitic stainless steels are the standard materials for containment of hydrogen and tritium because of their resistance to mechanical property degradation in those environments. The mechanical performance of the primary containment material is critical for tritium handling, processing, and storage, thus comprehensive understanding of the processes of tritium embrittlement is an enabling capability for fusion energy. This work describes the investigation of the effects of low levels of tritium-decay-helium ingrowth on 304 L tubes. Long-term aging with tritium leads to high helium contents in austenitic stainless steels and can reduce fracture toughness by 95 %, but the details of behavior at low helium contents are not as well characterized. Here, we present results from tensile testing of tritium pre-charged 304 L tube specimens with a variety of starting microstructures that all contain a low level of helium. The results of the tritium exposed-and-aged materials are compared to previously reported results on similar specimens tested in an unexposed condition as well as the hydrogen precharged condition. Tritium precharging and aging for a short duration resulted in increased yield strengths, ultimate tensile strengths and slightly increased elongation to failure, comparable to higher concentrations of hydrogen precharging.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2021.112413</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Aging (metallurgy) ; Austenitic stainless steel ; Austenitic stainless steels ; Containment ; Elongation ; Embrittlement ; Fracture toughness ; Helium ; Hydrogen ; Hydrogen embrittlement ; Materials handling ; Mechanical properties ; Stainless steel ; Steel tubes ; Tensile tests ; Tritium</subject><ispartof>Fusion engineering and design, 2021-07, Vol.168, p.112413, Article 112413</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f7174e9ed12fff383961ea30f39354ac60adbded9165651365dafd1909a0e3c3</citedby><cites>FETCH-LOGICAL-c419t-f7174e9ed12fff383961ea30f39354ac60adbded9165651365dafd1909a0e3c3</cites><orcidid>0000-0001-6037-5101 ; 0000-0002-0862-8607 ; 0000-0003-0095-5221 ; 0000000160375101 ; 0000000208628607 ; 0000000300955221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2021.112413$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1772033$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krentz, Timothy M.</creatorcontrib><creatorcontrib>Ronevich, Joseph A.</creatorcontrib><creatorcontrib>Balch, Dorian K.</creatorcontrib><creatorcontrib>Marchi, Chris San</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)</creatorcontrib><title>Tritium embrittlement of austenitic stainless-steel tubing at low helium contents</title><title>Fusion engineering and design</title><description>Austenitic stainless steels are the standard materials for containment of hydrogen and tritium because of their resistance to mechanical property degradation in those environments. The mechanical performance of the primary containment material is critical for tritium handling, processing, and storage, thus comprehensive understanding of the processes of tritium embrittlement is an enabling capability for fusion energy. This work describes the investigation of the effects of low levels of tritium-decay-helium ingrowth on 304 L tubes. Long-term aging with tritium leads to high helium contents in austenitic stainless steels and can reduce fracture toughness by 95 %, but the details of behavior at low helium contents are not as well characterized. Here, we present results from tensile testing of tritium pre-charged 304 L tube specimens with a variety of starting microstructures that all contain a low level of helium. The results of the tritium exposed-and-aged materials are compared to previously reported results on similar specimens tested in an unexposed condition as well as the hydrogen precharged condition. Tritium precharging and aging for a short duration resulted in increased yield strengths, ultimate tensile strengths and slightly increased elongation to failure, comparable to higher concentrations of hydrogen precharging.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Aging (metallurgy)</subject><subject>Austenitic stainless steel</subject><subject>Austenitic stainless steels</subject><subject>Containment</subject><subject>Elongation</subject><subject>Embrittlement</subject><subject>Fracture toughness</subject><subject>Helium</subject><subject>Hydrogen</subject><subject>Hydrogen embrittlement</subject><subject>Materials handling</subject><subject>Mechanical properties</subject><subject>Stainless steel</subject><subject>Steel tubes</subject><subject>Tensile tests</subject><subject>Tritium</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LBCEUxSUK2rY-Q0M9z-bVnXF9jKV_EESw7-LqtXWZdUqdom-fw0SvgaBcf-dw7iHkEugCKLQ3-4UbEoY3i2nBKIMFAFsCPyIzWAleC5DtMZlRyWjNhWxPyVlKe0pBlDMjr5vosx8OFR625ZU7PGDIVe8qPaSMoXyaKmXtQ4cp1WWEXZWHrQ9vlc5V139VO-xGA9OHwud0Tk6c7hJe_N5zsrm_26wf6-eXh6f17XNtliBz7QSIJUq0wJxzfMVlC6g5dVzyZqlNS7XdWrQS2qZtgLeN1c6CpFJT5IbPydVk26fsVTI-o9mVDAFNViAEo5wX6HqC3mP_MWDKat8PMZRYijUNA5CSQaHERJnYpxTRqffoDzp-K6Bq7Fjt1V_HauxYTR0X5e2kxLLop8c4BsFg0Po45rC9_9fjB8kpiig</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Krentz, Timothy M.</creator><creator>Ronevich, Joseph A.</creator><creator>Balch, Dorian K.</creator><creator>Marchi, Chris San</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6037-5101</orcidid><orcidid>https://orcid.org/0000-0002-0862-8607</orcidid><orcidid>https://orcid.org/0000-0003-0095-5221</orcidid><orcidid>https://orcid.org/0000000160375101</orcidid><orcidid>https://orcid.org/0000000208628607</orcidid><orcidid>https://orcid.org/0000000300955221</orcidid></search><sort><creationdate>202107</creationdate><title>Tritium embrittlement of austenitic stainless-steel tubing at low helium contents</title><author>Krentz, Timothy M. ; Ronevich, Joseph A. ; Balch, Dorian K. ; Marchi, Chris San</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f7174e9ed12fff383961ea30f39354ac60adbded9165651365dafd1909a0e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Aging (metallurgy)</topic><topic>Austenitic stainless steel</topic><topic>Austenitic stainless steels</topic><topic>Containment</topic><topic>Elongation</topic><topic>Embrittlement</topic><topic>Fracture toughness</topic><topic>Helium</topic><topic>Hydrogen</topic><topic>Hydrogen embrittlement</topic><topic>Materials handling</topic><topic>Mechanical properties</topic><topic>Stainless steel</topic><topic>Steel tubes</topic><topic>Tensile tests</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krentz, Timothy M.</creatorcontrib><creatorcontrib>Ronevich, Joseph A.</creatorcontrib><creatorcontrib>Balch, Dorian K.</creatorcontrib><creatorcontrib>Marchi, Chris San</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krentz, Timothy M.</au><au>Ronevich, Joseph A.</au><au>Balch, Dorian K.</au><au>Marchi, Chris San</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tritium embrittlement of austenitic stainless-steel tubing at low helium contents</atitle><jtitle>Fusion engineering and design</jtitle><date>2021-07</date><risdate>2021</risdate><volume>168</volume><spage>112413</spage><pages>112413-</pages><artnum>112413</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>Austenitic stainless steels are the standard materials for containment of hydrogen and tritium because of their resistance to mechanical property degradation in those environments. The mechanical performance of the primary containment material is critical for tritium handling, processing, and storage, thus comprehensive understanding of the processes of tritium embrittlement is an enabling capability for fusion energy. This work describes the investigation of the effects of low levels of tritium-decay-helium ingrowth on 304 L tubes. Long-term aging with tritium leads to high helium contents in austenitic stainless steels and can reduce fracture toughness by 95 %, but the details of behavior at low helium contents are not as well characterized. Here, we present results from tensile testing of tritium pre-charged 304 L tube specimens with a variety of starting microstructures that all contain a low level of helium. The results of the tritium exposed-and-aged materials are compared to previously reported results on similar specimens tested in an unexposed condition as well as the hydrogen precharged condition. Tritium precharging and aging for a short duration resulted in increased yield strengths, ultimate tensile strengths and slightly increased elongation to failure, comparable to higher concentrations of hydrogen precharging.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2021.112413</doi><orcidid>https://orcid.org/0000-0001-6037-5101</orcidid><orcidid>https://orcid.org/0000-0002-0862-8607</orcidid><orcidid>https://orcid.org/0000-0003-0095-5221</orcidid><orcidid>https://orcid.org/0000000160375101</orcidid><orcidid>https://orcid.org/0000000208628607</orcidid><orcidid>https://orcid.org/0000000300955221</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2021-07, Vol.168, p.112413, Article 112413
issn 0920-3796
1873-7196
language eng
recordid cdi_osti_scitechconnect_1772033
source Access via ScienceDirect (Elsevier)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Aging (metallurgy)
Austenitic stainless steel
Austenitic stainless steels
Containment
Elongation
Embrittlement
Fracture toughness
Helium
Hydrogen
Hydrogen embrittlement
Materials handling
Mechanical properties
Stainless steel
Steel tubes
Tensile tests
Tritium
title Tritium embrittlement of austenitic stainless-steel tubing at low helium contents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tritium%20embrittlement%20of%20austenitic%20stainless-steel%20tubing%20at%20low%20helium%20contents&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Krentz,%20Timothy%20M.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2021-07&rft.volume=168&rft.spage=112413&rft.pages=112413-&rft.artnum=112413&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2021.112413&rft_dat=%3Cproquest_osti_%3E2552119921%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552119921&rft_id=info:pmid/&rft_els_id=S0920379621001897&rfr_iscdi=true