Transport Simulations on Scanning Transmission Electron Microscope Images of Nanoporous Shale

Digital rock physics is an often-mentioned approach to better understand and model transport processes occurring in tight nanoporous media including the organic and inorganic matrix of shale. Workflows integrating nanometer-scale image data and pore-scale simulations are relatively undeveloped, howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-12, Vol.13 (24)
Hauptverfasser: Frouté, Laura, Wang, Yuhang, McKinzie, Jesse, Aryana, Saman, Kovscek, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Energies (Basel)
container_volume 13
creator Frouté, Laura
Wang, Yuhang
McKinzie, Jesse
Aryana, Saman
Kovscek, Anthony
description Digital rock physics is an often-mentioned approach to better understand and model transport processes occurring in tight nanoporous media including the organic and inorganic matrix of shale. Workflows integrating nanometer-scale image data and pore-scale simulations are relatively undeveloped, however. In this paper, a workflow is demonstrated progressing from sample acquisition and preparation, to image acquisition by Scanning Transmission Electron Microscopy (STEM) tomography, to volumetric reconstruction to pore-space discretization to numerical simulation of pore-scale transport. Key aspects of the workflow include (i) STEM tomography in high angle annular dark field (HAADF) mode to image three-dimensional pore networks in µm-sized samples with nanometer resolution and (ii) lattice Boltzmann method (LBM) simulations to describe gas flow in slip, transitional, and Knudsen diffusion regimes. It is shown that STEM tomography with nanoscale resolution yields excellent representation of the size and connectivity of organic nanopore networks. In turn, pore-scale simulation on such networks contributes to understanding of transport and storage properties of nanoporous shale. Interestingly, flow occurs primarily along pore networks with pore dimensions on the order of tens of nanometers. Smaller pores do not form percolating pathways in the sample volume imaged. Apparent gas permeability in the range of 10–19 to 10–16 m2 is computed.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1771841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1771841</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17718413</originalsourceid><addsrcrecordid>eNqNjL0KwjAUhYMoWLTvcHEvGCLWzlLRQZd2lRJC2kbae0tu-v4GcXD0LOeD87MQiSyKYyb3uVr-8FqkzK99lFJSKZWIZ-018kQ-QOXGedDBETIQQmU0osMOPo3RMccEysGa4CPcnfHEhiYLt1F3Nm5aeGik-EUzQ9XrwW7FqtUD2_TrG7G7lPX5mhEH17BxwZreEGI8bWSey9NBqr9Kb6McRmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport Simulations on Scanning Transmission Electron Microscope Images of Nanoporous Shale</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Frouté, Laura ; Wang, Yuhang ; McKinzie, Jesse ; Aryana, Saman ; Kovscek, Anthony</creator><creatorcontrib>Frouté, Laura ; Wang, Yuhang ; McKinzie, Jesse ; Aryana, Saman ; Kovscek, Anthony ; Univ. of Wyoming, Laramie, WY (United States) ; Stanford Univ., CA (United States)</creatorcontrib><description>Digital rock physics is an often-mentioned approach to better understand and model transport processes occurring in tight nanoporous media including the organic and inorganic matrix of shale. Workflows integrating nanometer-scale image data and pore-scale simulations are relatively undeveloped, however. In this paper, a workflow is demonstrated progressing from sample acquisition and preparation, to image acquisition by Scanning Transmission Electron Microscopy (STEM) tomography, to volumetric reconstruction to pore-space discretization to numerical simulation of pore-scale transport. Key aspects of the workflow include (i) STEM tomography in high angle annular dark field (HAADF) mode to image three-dimensional pore networks in µm-sized samples with nanometer resolution and (ii) lattice Boltzmann method (LBM) simulations to describe gas flow in slip, transitional, and Knudsen diffusion regimes. It is shown that STEM tomography with nanoscale resolution yields excellent representation of the size and connectivity of organic nanopore networks. In turn, pore-scale simulation on such networks contributes to understanding of transport and storage properties of nanoporous shale. Interestingly, flow occurs primarily along pore networks with pore dimensions on the order of tens of nanometers. Smaller pores do not form percolating pathways in the sample volume imaged. Apparent gas permeability in the range of 10–19 to 10–16 m2 is computed.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Electron microscopy ; ENGINEERING ; lattice Boltzmann method ; nanoporosity ; shale</subject><ispartof>Energies (Basel), 2020-12, Vol.13 (24)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000195097420 ; 0000000345560450 ; 000000020188160X ; 000000031336384X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1771841$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Frouté, Laura</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><creatorcontrib>McKinzie, Jesse</creatorcontrib><creatorcontrib>Aryana, Saman</creatorcontrib><creatorcontrib>Kovscek, Anthony</creatorcontrib><creatorcontrib>Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>Transport Simulations on Scanning Transmission Electron Microscope Images of Nanoporous Shale</title><title>Energies (Basel)</title><description>Digital rock physics is an often-mentioned approach to better understand and model transport processes occurring in tight nanoporous media including the organic and inorganic matrix of shale. Workflows integrating nanometer-scale image data and pore-scale simulations are relatively undeveloped, however. In this paper, a workflow is demonstrated progressing from sample acquisition and preparation, to image acquisition by Scanning Transmission Electron Microscopy (STEM) tomography, to volumetric reconstruction to pore-space discretization to numerical simulation of pore-scale transport. Key aspects of the workflow include (i) STEM tomography in high angle annular dark field (HAADF) mode to image three-dimensional pore networks in µm-sized samples with nanometer resolution and (ii) lattice Boltzmann method (LBM) simulations to describe gas flow in slip, transitional, and Knudsen diffusion regimes. It is shown that STEM tomography with nanoscale resolution yields excellent representation of the size and connectivity of organic nanopore networks. In turn, pore-scale simulation on such networks contributes to understanding of transport and storage properties of nanoporous shale. Interestingly, flow occurs primarily along pore networks with pore dimensions on the order of tens of nanometers. Smaller pores do not form percolating pathways in the sample volume imaged. Apparent gas permeability in the range of 10–19 to 10–16 m2 is computed.</description><subject>Electron microscopy</subject><subject>ENGINEERING</subject><subject>lattice Boltzmann method</subject><subject>nanoporosity</subject><subject>shale</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjL0KwjAUhYMoWLTvcHEvGCLWzlLRQZd2lRJC2kbae0tu-v4GcXD0LOeD87MQiSyKYyb3uVr-8FqkzK99lFJSKZWIZ-018kQ-QOXGedDBETIQQmU0osMOPo3RMccEysGa4CPcnfHEhiYLt1F3Nm5aeGik-EUzQ9XrwW7FqtUD2_TrG7G7lPX5mhEH17BxwZreEGI8bWSey9NBqr9Kb6McRmQ</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Frouté, Laura</creator><creator>Wang, Yuhang</creator><creator>McKinzie, Jesse</creator><creator>Aryana, Saman</creator><creator>Kovscek, Anthony</creator><general>MDPI AG</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000195097420</orcidid><orcidid>https://orcid.org/0000000345560450</orcidid><orcidid>https://orcid.org/000000020188160X</orcidid><orcidid>https://orcid.org/000000031336384X</orcidid></search><sort><creationdate>20201217</creationdate><title>Transport Simulations on Scanning Transmission Electron Microscope Images of Nanoporous Shale</title><author>Frouté, Laura ; Wang, Yuhang ; McKinzie, Jesse ; Aryana, Saman ; Kovscek, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17718413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electron microscopy</topic><topic>ENGINEERING</topic><topic>lattice Boltzmann method</topic><topic>nanoporosity</topic><topic>shale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frouté, Laura</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><creatorcontrib>McKinzie, Jesse</creatorcontrib><creatorcontrib>Aryana, Saman</creatorcontrib><creatorcontrib>Kovscek, Anthony</creatorcontrib><creatorcontrib>Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frouté, Laura</au><au>Wang, Yuhang</au><au>McKinzie, Jesse</au><au>Aryana, Saman</au><au>Kovscek, Anthony</au><aucorp>Univ. of Wyoming, Laramie, WY (United States)</aucorp><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport Simulations on Scanning Transmission Electron Microscope Images of Nanoporous Shale</atitle><jtitle>Energies (Basel)</jtitle><date>2020-12-17</date><risdate>2020</risdate><volume>13</volume><issue>24</issue><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Digital rock physics is an often-mentioned approach to better understand and model transport processes occurring in tight nanoporous media including the organic and inorganic matrix of shale. Workflows integrating nanometer-scale image data and pore-scale simulations are relatively undeveloped, however. In this paper, a workflow is demonstrated progressing from sample acquisition and preparation, to image acquisition by Scanning Transmission Electron Microscopy (STEM) tomography, to volumetric reconstruction to pore-space discretization to numerical simulation of pore-scale transport. Key aspects of the workflow include (i) STEM tomography in high angle annular dark field (HAADF) mode to image three-dimensional pore networks in µm-sized samples with nanometer resolution and (ii) lattice Boltzmann method (LBM) simulations to describe gas flow in slip, transitional, and Knudsen diffusion regimes. It is shown that STEM tomography with nanoscale resolution yields excellent representation of the size and connectivity of organic nanopore networks. In turn, pore-scale simulation on such networks contributes to understanding of transport and storage properties of nanoporous shale. Interestingly, flow occurs primarily along pore networks with pore dimensions on the order of tens of nanometers. Smaller pores do not form percolating pathways in the sample volume imaged. Apparent gas permeability in the range of 10–19 to 10–16 m2 is computed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><orcidid>https://orcid.org/0000000195097420</orcidid><orcidid>https://orcid.org/0000000345560450</orcidid><orcidid>https://orcid.org/000000020188160X</orcidid><orcidid>https://orcid.org/000000031336384X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020-12, Vol.13 (24)
issn 1996-1073
1996-1073
language eng
recordid cdi_osti_scitechconnect_1771841
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Electron microscopy
ENGINEERING
lattice Boltzmann method
nanoporosity
shale
title Transport Simulations on Scanning Transmission Electron Microscope Images of Nanoporous Shale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20Simulations%20on%20Scanning%20Transmission%20Electron%20Microscope%20Images%20of%20Nanoporous%20Shale&rft.jtitle=Energies%20(Basel)&rft.au=Frout%C3%A9,%20Laura&rft.aucorp=Univ.%20of%20Wyoming,%20Laramie,%20WY%20(United%20States)&rft.date=2020-12-17&rft.volume=13&rft.issue=24&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/&rft_dat=%3Costi%3E1771841%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true