A Comparative Evaluation of Community Detection Algorithms in Social Networks

Community detection in networks is used to understand the underlying structure of the network and obtain insight into the structure of the network. Evaluation of the detected structures is challenging since there are no canonical solutions available. Validation of developed algorithms therefore requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science 2020, Vol.171 (C), p.1157-1165
Hauptverfasser: George, R., Shujaee, K., Kerwat, M., Felfli, Z., Gelenbe, D., Ukuwu, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1165
container_issue C
container_start_page 1157
container_title Procedia computer science
container_volume 171
creator George, R.
Shujaee, K.
Kerwat, M.
Felfli, Z.
Gelenbe, D.
Ukuwu, K.
description Community detection in networks is used to understand the underlying structure of the network and obtain insight into the structure of the network. Evaluation of the detected structures is challenging since there are no canonical solutions available. Validation of developed algorithms therefore requires evaluation on multiple different data sets. In this paper, we use synthetic data sets generated by Lancichinetti, Fortunato and Radicchi (LFR) algorithm, and real datasets from known networks to evaluate several different community detection algorithms. The LFR benchmark is used to generate networks with a variety of sizes, and mixing parameters ranging from completely separable to highly mixed for this comparative study. We compare the performance of the recently developed Community Density Rank (CDR) algorithm against other state-of-the-art community detection approaches. It is found that for the synthetic datasets the CDR outperforms the comparison algorithms while the results are mixed for all algorithms on real datasets. These results are used to generalize the applicability of community detection algorithms across a variety of datasets.
doi_str_mv 10.1016/j.procs.2020.04.124
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1771207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1877050920311029</els_id><sourcerecordid>S1877050920311029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2904-ee45285e7c3dc79258377eaf0635bc208938d0e27531ede50d69aa98508232823</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKVfwCXinrC2k9o5cKhKeUgFDsDZMs6GuiRxZadF_XuclgMnVlrtaHdnNBpCLilkFOj0ep1tvDMhY8AggzyjLD8hIyqFSKGA8vQPPieTENYQi0tZUjEiT7Nk7tqN9rq3O0wWO91sI3Rd4urh0m472--TW-zRHNaz5tN526_akNgueXXG6iZ5xv7b-a9wQc5q3QSc_M4xeb9bvM0f0uXL_eN8tkwNKyFPEfOCyQKF4ZURJSskFwJ1DVNefBgGsuSyAmSi4BQrLKCallqXsgDJOIs9JldHXRd6q4Kx0d3KuK6LJhUVgjIQ8Ykfn4x3IXis1cbbVvu9oqCG5NRaHZJTQ3IKchWTi6ybIwuj_51FP8hjZ7CyflCvnP2X_wO_jnbv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Comparative Evaluation of Community Detection Algorithms in Social Networks</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>George, R. ; Shujaee, K. ; Kerwat, M. ; Felfli, Z. ; Gelenbe, D. ; Ukuwu, K.</creator><creatorcontrib>George, R. ; Shujaee, K. ; Kerwat, M. ; Felfli, Z. ; Gelenbe, D. ; Ukuwu, K.</creatorcontrib><description>Community detection in networks is used to understand the underlying structure of the network and obtain insight into the structure of the network. Evaluation of the detected structures is challenging since there are no canonical solutions available. Validation of developed algorithms therefore requires evaluation on multiple different data sets. In this paper, we use synthetic data sets generated by Lancichinetti, Fortunato and Radicchi (LFR) algorithm, and real datasets from known networks to evaluate several different community detection algorithms. The LFR benchmark is used to generate networks with a variety of sizes, and mixing parameters ranging from completely separable to highly mixed for this comparative study. We compare the performance of the recently developed Community Density Rank (CDR) algorithm against other state-of-the-art community detection approaches. It is found that for the synthetic datasets the CDR outperforms the comparison algorithms while the results are mixed for all algorithms on real datasets. These results are used to generalize the applicability of community detection algorithms across a variety of datasets.</description><identifier>ISSN: 1877-0509</identifier><identifier>EISSN: 1877-0509</identifier><identifier>DOI: 10.1016/j.procs.2020.04.124</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Community Detection ; Density-based Clustering ; LFR Benchmark ; Randomized Shortest Path ; Real Networks Type your keywords here ; separated by semicolons ; Social Networks</subject><ispartof>Procedia computer science, 2020, Vol.171 (C), p.1157-1165</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2904-ee45285e7c3dc79258377eaf0635bc208938d0e27531ede50d69aa98508232823</citedby><cites>FETCH-LOGICAL-c2904-ee45285e7c3dc79258377eaf0635bc208938d0e27531ede50d69aa98508232823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.procs.2020.04.124$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,4025,27928,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1771207$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>George, R.</creatorcontrib><creatorcontrib>Shujaee, K.</creatorcontrib><creatorcontrib>Kerwat, M.</creatorcontrib><creatorcontrib>Felfli, Z.</creatorcontrib><creatorcontrib>Gelenbe, D.</creatorcontrib><creatorcontrib>Ukuwu, K.</creatorcontrib><title>A Comparative Evaluation of Community Detection Algorithms in Social Networks</title><title>Procedia computer science</title><description>Community detection in networks is used to understand the underlying structure of the network and obtain insight into the structure of the network. Evaluation of the detected structures is challenging since there are no canonical solutions available. Validation of developed algorithms therefore requires evaluation on multiple different data sets. In this paper, we use synthetic data sets generated by Lancichinetti, Fortunato and Radicchi (LFR) algorithm, and real datasets from known networks to evaluate several different community detection algorithms. The LFR benchmark is used to generate networks with a variety of sizes, and mixing parameters ranging from completely separable to highly mixed for this comparative study. We compare the performance of the recently developed Community Density Rank (CDR) algorithm against other state-of-the-art community detection approaches. It is found that for the synthetic datasets the CDR outperforms the comparison algorithms while the results are mixed for all algorithms on real datasets. These results are used to generalize the applicability of community detection algorithms across a variety of datasets.</description><subject>Community Detection</subject><subject>Density-based Clustering</subject><subject>LFR Benchmark</subject><subject>Randomized Shortest Path</subject><subject>Real Networks Type your keywords here</subject><subject>separated by semicolons</subject><subject>Social Networks</subject><issn>1877-0509</issn><issn>1877-0509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKVfwCXinrC2k9o5cKhKeUgFDsDZMs6GuiRxZadF_XuclgMnVlrtaHdnNBpCLilkFOj0ep1tvDMhY8AggzyjLD8hIyqFSKGA8vQPPieTENYQi0tZUjEiT7Nk7tqN9rq3O0wWO91sI3Rd4urh0m472--TW-zRHNaz5tN526_akNgueXXG6iZ5xv7b-a9wQc5q3QSc_M4xeb9bvM0f0uXL_eN8tkwNKyFPEfOCyQKF4ZURJSskFwJ1DVNefBgGsuSyAmSi4BQrLKCallqXsgDJOIs9JldHXRd6q4Kx0d3KuK6LJhUVgjIQ8Ykfn4x3IXis1cbbVvu9oqCG5NRaHZJTQ3IKchWTi6ybIwuj_51FP8hjZ7CyflCvnP2X_wO_jnbv</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>George, R.</creator><creator>Shujaee, K.</creator><creator>Kerwat, M.</creator><creator>Felfli, Z.</creator><creator>Gelenbe, D.</creator><creator>Ukuwu, K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>2020</creationdate><title>A Comparative Evaluation of Community Detection Algorithms in Social Networks</title><author>George, R. ; Shujaee, K. ; Kerwat, M. ; Felfli, Z. ; Gelenbe, D. ; Ukuwu, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2904-ee45285e7c3dc79258377eaf0635bc208938d0e27531ede50d69aa98508232823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Community Detection</topic><topic>Density-based Clustering</topic><topic>LFR Benchmark</topic><topic>Randomized Shortest Path</topic><topic>Real Networks Type your keywords here</topic><topic>separated by semicolons</topic><topic>Social Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, R.</creatorcontrib><creatorcontrib>Shujaee, K.</creatorcontrib><creatorcontrib>Kerwat, M.</creatorcontrib><creatorcontrib>Felfli, Z.</creatorcontrib><creatorcontrib>Gelenbe, D.</creatorcontrib><creatorcontrib>Ukuwu, K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Procedia computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, R.</au><au>Shujaee, K.</au><au>Kerwat, M.</au><au>Felfli, Z.</au><au>Gelenbe, D.</au><au>Ukuwu, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Evaluation of Community Detection Algorithms in Social Networks</atitle><jtitle>Procedia computer science</jtitle><date>2020</date><risdate>2020</risdate><volume>171</volume><issue>C</issue><spage>1157</spage><epage>1165</epage><pages>1157-1165</pages><issn>1877-0509</issn><eissn>1877-0509</eissn><abstract>Community detection in networks is used to understand the underlying structure of the network and obtain insight into the structure of the network. Evaluation of the detected structures is challenging since there are no canonical solutions available. Validation of developed algorithms therefore requires evaluation on multiple different data sets. In this paper, we use synthetic data sets generated by Lancichinetti, Fortunato and Radicchi (LFR) algorithm, and real datasets from known networks to evaluate several different community detection algorithms. The LFR benchmark is used to generate networks with a variety of sizes, and mixing parameters ranging from completely separable to highly mixed for this comparative study. We compare the performance of the recently developed Community Density Rank (CDR) algorithm against other state-of-the-art community detection approaches. It is found that for the synthetic datasets the CDR outperforms the comparison algorithms while the results are mixed for all algorithms on real datasets. These results are used to generalize the applicability of community detection algorithms across a variety of datasets.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.procs.2020.04.124</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1877-0509
ispartof Procedia computer science, 2020, Vol.171 (C), p.1157-1165
issn 1877-0509
1877-0509
language eng
recordid cdi_osti_scitechconnect_1771207
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Community Detection
Density-based Clustering
LFR Benchmark
Randomized Shortest Path
Real Networks Type your keywords here
separated by semicolons
Social Networks
title A Comparative Evaluation of Community Detection Algorithms in Social Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Evaluation%20of%20Community%20Detection%20Algorithms%20in%20Social%20Networks&rft.jtitle=Procedia%20computer%20science&rft.au=George,%20R.&rft.date=2020&rft.volume=171&rft.issue=C&rft.spage=1157&rft.epage=1165&rft.pages=1157-1165&rft.issn=1877-0509&rft.eissn=1877-0509&rft_id=info:doi/10.1016/j.procs.2020.04.124&rft_dat=%3Celsevier_osti_%3ES1877050920311029%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1877050920311029&rfr_iscdi=true