Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas
Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory m...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2021-03, Vol.28 (3) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 28 |
creator | Stanek, Lucas J. Clay, Raymond C. Dharma-wardana, M. C. Wood, Mitchell A. Beckwith, Kristian C. Murillo, Michael S. |
description | Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ~20%. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1770780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770780</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17707803</originalsourceid><addsrcrecordid>eNqNjEsKAjEQRIMo-L1D434g4jgZ16J4ABfupMkkTkt-pCPo7XXAA7iqqsejRmK2ke2-Uo2qx0NXsmqa-joVc-aHlLJudu1M3I_Wkkb9hmih9AYydoQOElKGFIsJZZiYUo4v8lgoBrAxg4_O6KfDDN07oCfNwOS_YDB4eOtMYAPJIXvkpZhYdGxWv1yI9el4OZyryIVurKkY3esYgtHltlFKqlZu_5I-PdRJ4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Stanek, Lucas J. ; Clay, Raymond C. ; Dharma-wardana, M. C. ; Wood, Mitchell A. ; Beckwith, Kristian C. ; Murillo, Michael S.</creator><creatorcontrib>Stanek, Lucas J. ; Clay, Raymond C. ; Dharma-wardana, M. C. ; Wood, Mitchell A. ; Beckwith, Kristian C. ; Murillo, Michael S. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ~20%.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; diffusion ; interatomic potentials ; Kohn-Sham density functional theory ; molecular dynamics ; potential energy surfaces ; thermodynamic limit ; transport properties</subject><ispartof>Physics of plasmas, 2021-03, Vol.28 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000189879071 ; 0000000256108331 ; 0000000340165363 ; 0000000194713324 ; 000000024365929X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1770780$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stanek, Lucas J.</creatorcontrib><creatorcontrib>Clay, Raymond C.</creatorcontrib><creatorcontrib>Dharma-wardana, M. C.</creatorcontrib><creatorcontrib>Wood, Mitchell A.</creatorcontrib><creatorcontrib>Beckwith, Kristian C.</creatorcontrib><creatorcontrib>Murillo, Michael S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas</title><title>Physics of plasmas</title><description>Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ~20%.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>diffusion</subject><subject>interatomic potentials</subject><subject>Kohn-Sham density functional theory</subject><subject>molecular dynamics</subject><subject>potential energy surfaces</subject><subject>thermodynamic limit</subject><subject>transport properties</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjEsKAjEQRIMo-L1D434g4jgZ16J4ABfupMkkTkt-pCPo7XXAA7iqqsejRmK2ke2-Uo2qx0NXsmqa-joVc-aHlLJudu1M3I_Wkkb9hmih9AYydoQOElKGFIsJZZiYUo4v8lgoBrAxg4_O6KfDDN07oCfNwOS_YDB4eOtMYAPJIXvkpZhYdGxWv1yI9el4OZyryIVurKkY3esYgtHltlFKqlZu_5I-PdRJ4Q</recordid><startdate>20210311</startdate><enddate>20210311</enddate><creator>Stanek, Lucas J.</creator><creator>Clay, Raymond C.</creator><creator>Dharma-wardana, M. C.</creator><creator>Wood, Mitchell A.</creator><creator>Beckwith, Kristian C.</creator><creator>Murillo, Michael S.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000189879071</orcidid><orcidid>https://orcid.org/0000000256108331</orcidid><orcidid>https://orcid.org/0000000340165363</orcidid><orcidid>https://orcid.org/0000000194713324</orcidid><orcidid>https://orcid.org/000000024365929X</orcidid></search><sort><creationdate>20210311</creationdate><title>Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas</title><author>Stanek, Lucas J. ; Clay, Raymond C. ; Dharma-wardana, M. C. ; Wood, Mitchell A. ; Beckwith, Kristian C. ; Murillo, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17707803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>diffusion</topic><topic>interatomic potentials</topic><topic>Kohn-Sham density functional theory</topic><topic>molecular dynamics</topic><topic>potential energy surfaces</topic><topic>thermodynamic limit</topic><topic>transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanek, Lucas J.</creatorcontrib><creatorcontrib>Clay, Raymond C.</creatorcontrib><creatorcontrib>Dharma-wardana, M. C.</creatorcontrib><creatorcontrib>Wood, Mitchell A.</creatorcontrib><creatorcontrib>Beckwith, Kristian C.</creatorcontrib><creatorcontrib>Murillo, Michael S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanek, Lucas J.</au><au>Clay, Raymond C.</au><au>Dharma-wardana, M. C.</au><au>Wood, Mitchell A.</au><au>Beckwith, Kristian C.</au><au>Murillo, Michael S.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas</atitle><jtitle>Physics of plasmas</jtitle><date>2021-03-11</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ~20%.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000189879071</orcidid><orcidid>https://orcid.org/0000000256108331</orcidid><orcidid>https://orcid.org/0000000340165363</orcidid><orcidid>https://orcid.org/0000000194713324</orcidid><orcidid>https://orcid.org/000000024365929X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2021-03, Vol.28 (3) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1770780 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY diffusion interatomic potentials Kohn-Sham density functional theory molecular dynamics potential energy surfaces thermodynamic limit transport properties |
title | Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficacy%20of%20the%20radial%20pair%20potential%20approximation%20for%20molecular%20dynamics%20simulations%20of%20dense%20plasmas&rft.jtitle=Physics%20of%20plasmas&rft.au=Stanek,%20Lucas%20J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-03-11&rft.volume=28&rft.issue=3&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/&rft_dat=%3Costi%3E1770780%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |