Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas

Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2021-03, Vol.28 (3)
Hauptverfasser: Stanek, Lucas J., Clay, Raymond C., Dharma-wardana, M. C., Wood, Mitchell A., Beckwith, Kristian C., Murillo, Michael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of plasmas
container_volume 28
creator Stanek, Lucas J.
Clay, Raymond C.
Dharma-wardana, M. C.
Wood, Mitchell A.
Beckwith, Kristian C.
Murillo, Michael S.
description Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ~20%.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1770780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770780</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17707803</originalsourceid><addsrcrecordid>eNqNjEsKAjEQRIMo-L1D434g4jgZ16J4ABfupMkkTkt-pCPo7XXAA7iqqsejRmK2ke2-Uo2qx0NXsmqa-joVc-aHlLJudu1M3I_Wkkb9hmih9AYydoQOElKGFIsJZZiYUo4v8lgoBrAxg4_O6KfDDN07oCfNwOS_YDB4eOtMYAPJIXvkpZhYdGxWv1yI9el4OZyryIVurKkY3esYgtHltlFKqlZu_5I-PdRJ4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Stanek, Lucas J. ; Clay, Raymond C. ; Dharma-wardana, M. C. ; Wood, Mitchell A. ; Beckwith, Kristian C. ; Murillo, Michael S.</creator><creatorcontrib>Stanek, Lucas J. ; Clay, Raymond C. ; Dharma-wardana, M. C. ; Wood, Mitchell A. ; Beckwith, Kristian C. ; Murillo, Michael S. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ~20%.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; diffusion ; interatomic potentials ; Kohn-Sham density functional theory ; molecular dynamics ; potential energy surfaces ; thermodynamic limit ; transport properties</subject><ispartof>Physics of plasmas, 2021-03, Vol.28 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000189879071 ; 0000000256108331 ; 0000000340165363 ; 0000000194713324 ; 000000024365929X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1770780$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stanek, Lucas J.</creatorcontrib><creatorcontrib>Clay, Raymond C.</creatorcontrib><creatorcontrib>Dharma-wardana, M. C.</creatorcontrib><creatorcontrib>Wood, Mitchell A.</creatorcontrib><creatorcontrib>Beckwith, Kristian C.</creatorcontrib><creatorcontrib>Murillo, Michael S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas</title><title>Physics of plasmas</title><description>Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ~20%.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>diffusion</subject><subject>interatomic potentials</subject><subject>Kohn-Sham density functional theory</subject><subject>molecular dynamics</subject><subject>potential energy surfaces</subject><subject>thermodynamic limit</subject><subject>transport properties</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjEsKAjEQRIMo-L1D434g4jgZ16J4ABfupMkkTkt-pCPo7XXAA7iqqsejRmK2ke2-Uo2qx0NXsmqa-joVc-aHlLJudu1M3I_Wkkb9hmih9AYydoQOElKGFIsJZZiYUo4v8lgoBrAxg4_O6KfDDN07oCfNwOS_YDB4eOtMYAPJIXvkpZhYdGxWv1yI9el4OZyryIVurKkY3esYgtHltlFKqlZu_5I-PdRJ4Q</recordid><startdate>20210311</startdate><enddate>20210311</enddate><creator>Stanek, Lucas J.</creator><creator>Clay, Raymond C.</creator><creator>Dharma-wardana, M. C.</creator><creator>Wood, Mitchell A.</creator><creator>Beckwith, Kristian C.</creator><creator>Murillo, Michael S.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000189879071</orcidid><orcidid>https://orcid.org/0000000256108331</orcidid><orcidid>https://orcid.org/0000000340165363</orcidid><orcidid>https://orcid.org/0000000194713324</orcidid><orcidid>https://orcid.org/000000024365929X</orcidid></search><sort><creationdate>20210311</creationdate><title>Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas</title><author>Stanek, Lucas J. ; Clay, Raymond C. ; Dharma-wardana, M. C. ; Wood, Mitchell A. ; Beckwith, Kristian C. ; Murillo, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17707803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>diffusion</topic><topic>interatomic potentials</topic><topic>Kohn-Sham density functional theory</topic><topic>molecular dynamics</topic><topic>potential energy surfaces</topic><topic>thermodynamic limit</topic><topic>transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanek, Lucas J.</creatorcontrib><creatorcontrib>Clay, Raymond C.</creatorcontrib><creatorcontrib>Dharma-wardana, M. C.</creatorcontrib><creatorcontrib>Wood, Mitchell A.</creatorcontrib><creatorcontrib>Beckwith, Kristian C.</creatorcontrib><creatorcontrib>Murillo, Michael S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanek, Lucas J.</au><au>Clay, Raymond C.</au><au>Dharma-wardana, M. C.</au><au>Wood, Mitchell A.</au><au>Beckwith, Kristian C.</au><au>Murillo, Michael S.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas</atitle><jtitle>Physics of plasmas</jtitle><date>2021-03-11</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn–Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ~20%.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000189879071</orcidid><orcidid>https://orcid.org/0000000256108331</orcidid><orcidid>https://orcid.org/0000000340165363</orcidid><orcidid>https://orcid.org/0000000194713324</orcidid><orcidid>https://orcid.org/000000024365929X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2021-03, Vol.28 (3)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1770780
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
diffusion
interatomic potentials
Kohn-Sham density functional theory
molecular dynamics
potential energy surfaces
thermodynamic limit
transport properties
title Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficacy%20of%20the%20radial%20pair%20potential%20approximation%20for%20molecular%20dynamics%20simulations%20of%20dense%20plasmas&rft.jtitle=Physics%20of%20plasmas&rft.au=Stanek,%20Lucas%20J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-03-11&rft.volume=28&rft.issue=3&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/&rft_dat=%3Costi%3E1770780%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true