Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces
Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-10, Vol.128 (15) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 128 |
creator | van Maris, Victor R. Hauschild, Dirk Niesen, Thomas P. Eraerds, Patrick Dalibor, Thomas Palm, Jörg Blum, Monika Yang, Wanli Heske, Clemens Weinhardt, Lothar |
description | Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning steps. To study the impact of these treatments, the chemical surface structure of a CIGSSe absorber is investigated. For this purpose, a set of surface-sensitive spectroscopic methods, i.e., laboratory-based x-ray photoelectron spectroscopy and x-ray-excited Auger electron spectroscopy, is combined with synchrotron-based soft x-ray emission spectroscopy. After treatment times as short as 15 s, the UV-induced ozone treatment decreases the amount of carbon adsorbates at the CIGSSe surface significantly, while the oxygen content increases. This is accompanied by the oxidation of all absorber surface elements, i.e., indium, selenium, sulfur, and copper. Short (60 s) low-energy Ar+-ion treatments, in contrast, primarily remove oxygen from the surface. Longer treatment times also lead to a removal of carbon, while extremely long treatment times can also lead to additional (likely metallic) Cu phases at the absorber surface as well. |
doi_str_mv | 10.1063/5.0020253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1770001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451209071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2343-c4af779e59896b962212c8856ddc0fd4864559ef220ddb9ad42011dd70cd08953</originalsourceid><addsrcrecordid>eNqdkMFOGzEQhq2qSE2hB97Aai8E2GB717vrI4ogRELiAOnVcsazZFFip7YXRJ4eR0HqndOMRp_-mfkIOeVswlldXskJY4IJWX4jI85aVTRSsu9klKe8aFWjfpCfMb4wxnlbqhHZzTdbA4n6ji7-Fr2zA6ClfucdUuMsXfu3Ah2G53d6HS6K3jsKazSud88092mFFFa46cGsaUxhgDQE3KdNh7O5u5yZ8dnj5SOOBTXL6MMSA41D6AxgPCFHnVlH_PVZj8ni9uZpelfcP8zm0-v7AkRZlQVUpmsahVK1ql6qWgguoG1lbS2wzlZtXUmpsBOCWbtUxlYiP2dtw8BmAbI8Jr8PuT6mXkfoE8IKvHMISfOmYVlGhv4coG3w_waMSb_4Ibh8lxaV5IIp1uyp8YGC4GMM2Olt6DcmvGvO9N6_lvrTf2bPD-x-o0nZ3NfgVx_-g3pru_IDcqqQ0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451209071</pqid></control><display><type>article</type><title>Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>van Maris, Victor R. ; Hauschild, Dirk ; Niesen, Thomas P. ; Eraerds, Patrick ; Dalibor, Thomas ; Palm, Jörg ; Blum, Monika ; Yang, Wanli ; Heske, Clemens ; Weinhardt, Lothar</creator><creatorcontrib>van Maris, Victor R. ; Hauschild, Dirk ; Niesen, Thomas P. ; Eraerds, Patrick ; Dalibor, Thomas ; Palm, Jörg ; Blum, Monika ; Yang, Wanli ; Heske, Clemens ; Weinhardt, Lothar</creatorcontrib><description>Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning steps. To study the impact of these treatments, the chemical surface structure of a CIGSSe absorber is investigated. For this purpose, a set of surface-sensitive spectroscopic methods, i.e., laboratory-based x-ray photoelectron spectroscopy and x-ray-excited Auger electron spectroscopy, is combined with synchrotron-based soft x-ray emission spectroscopy. After treatment times as short as 15 s, the UV-induced ozone treatment decreases the amount of carbon adsorbates at the CIGSSe surface significantly, while the oxygen content increases. This is accompanied by the oxidation of all absorber surface elements, i.e., indium, selenium, sulfur, and copper. Short (60 s) low-energy Ar+-ion treatments, in contrast, primarily remove oxygen from the surface. Longer treatment times also lead to a removal of carbon, while extremely long treatment times can also lead to additional (likely metallic) Cu phases at the absorber surface as well.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0020253</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorbers ; Adsorbates ; Applied physics ; Buffer layers ; Carbon ; Chalcopyrite ; Copper ; Deposition ; Excitation spectra ; Ion cleaning ; Oxidation ; Oxygen content ; Ozone ; Photoelectrons ; Photovoltaic cells ; Selenium ; Soft x rays ; Solar cells ; Spectrum analysis ; Surface structure ; Synchrotrons ; Thin films ; X ray photoelectron spectroscopy</subject><ispartof>Journal of applied physics, 2020-10, Vol.128 (15)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2343-c4af779e59896b962212c8856ddc0fd4864559ef220ddb9ad42011dd70cd08953</citedby><cites>FETCH-LOGICAL-c2343-c4af779e59896b962212c8856ddc0fd4864559ef220ddb9ad42011dd70cd08953</cites><orcidid>0000-0002-2918-9092 ; 0000-0003-0666-8063 ; 0000-0001-9088-8944 ; 0000-0003-1178-6793 ; 0000-0001-7586-4549 ; 0000-0002-7287-1820 ; 0000-0002-8537-2967 ; 0000-0003-3361-1054 ; 0000000306668063 ; 0000000190888944 ; 0000000229189092 ; 0000000175864549 ; 0000000311786793 ; 0000000333611054 ; 0000000272871820 ; 0000000285372967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0020253$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1770001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>van Maris, Victor R.</creatorcontrib><creatorcontrib>Hauschild, Dirk</creatorcontrib><creatorcontrib>Niesen, Thomas P.</creatorcontrib><creatorcontrib>Eraerds, Patrick</creatorcontrib><creatorcontrib>Dalibor, Thomas</creatorcontrib><creatorcontrib>Palm, Jörg</creatorcontrib><creatorcontrib>Blum, Monika</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Heske, Clemens</creatorcontrib><creatorcontrib>Weinhardt, Lothar</creatorcontrib><title>Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces</title><title>Journal of applied physics</title><description>Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning steps. To study the impact of these treatments, the chemical surface structure of a CIGSSe absorber is investigated. For this purpose, a set of surface-sensitive spectroscopic methods, i.e., laboratory-based x-ray photoelectron spectroscopy and x-ray-excited Auger electron spectroscopy, is combined with synchrotron-based soft x-ray emission spectroscopy. After treatment times as short as 15 s, the UV-induced ozone treatment decreases the amount of carbon adsorbates at the CIGSSe surface significantly, while the oxygen content increases. This is accompanied by the oxidation of all absorber surface elements, i.e., indium, selenium, sulfur, and copper. Short (60 s) low-energy Ar+-ion treatments, in contrast, primarily remove oxygen from the surface. Longer treatment times also lead to a removal of carbon, while extremely long treatment times can also lead to additional (likely metallic) Cu phases at the absorber surface as well.</description><subject>Absorbers</subject><subject>Adsorbates</subject><subject>Applied physics</subject><subject>Buffer layers</subject><subject>Carbon</subject><subject>Chalcopyrite</subject><subject>Copper</subject><subject>Deposition</subject><subject>Excitation spectra</subject><subject>Ion cleaning</subject><subject>Oxidation</subject><subject>Oxygen content</subject><subject>Ozone</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Selenium</subject><subject>Soft x rays</subject><subject>Solar cells</subject><subject>Spectrum analysis</subject><subject>Surface structure</subject><subject>Synchrotrons</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkMFOGzEQhq2qSE2hB97Aai8E2GB717vrI4ogRELiAOnVcsazZFFip7YXRJ4eR0HqndOMRp_-mfkIOeVswlldXskJY4IJWX4jI85aVTRSsu9klKe8aFWjfpCfMb4wxnlbqhHZzTdbA4n6ji7-Fr2zA6ClfucdUuMsXfu3Ah2G53d6HS6K3jsKazSud88092mFFFa46cGsaUxhgDQE3KdNh7O5u5yZ8dnj5SOOBTXL6MMSA41D6AxgPCFHnVlH_PVZj8ni9uZpelfcP8zm0-v7AkRZlQVUpmsahVK1ql6qWgguoG1lbS2wzlZtXUmpsBOCWbtUxlYiP2dtw8BmAbI8Jr8PuT6mXkfoE8IKvHMISfOmYVlGhv4coG3w_waMSb_4Ibh8lxaV5IIp1uyp8YGC4GMM2Olt6DcmvGvO9N6_lvrTf2bPD-x-o0nZ3NfgVx_-g3pru_IDcqqQ0w</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>van Maris, Victor R.</creator><creator>Hauschild, Dirk</creator><creator>Niesen, Thomas P.</creator><creator>Eraerds, Patrick</creator><creator>Dalibor, Thomas</creator><creator>Palm, Jörg</creator><creator>Blum, Monika</creator><creator>Yang, Wanli</creator><creator>Heske, Clemens</creator><creator>Weinhardt, Lothar</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2918-9092</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0001-9088-8944</orcidid><orcidid>https://orcid.org/0000-0003-1178-6793</orcidid><orcidid>https://orcid.org/0000-0001-7586-4549</orcidid><orcidid>https://orcid.org/0000-0002-7287-1820</orcidid><orcidid>https://orcid.org/0000-0002-8537-2967</orcidid><orcidid>https://orcid.org/0000-0003-3361-1054</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000190888944</orcidid><orcidid>https://orcid.org/0000000229189092</orcidid><orcidid>https://orcid.org/0000000175864549</orcidid><orcidid>https://orcid.org/0000000311786793</orcidid><orcidid>https://orcid.org/0000000333611054</orcidid><orcidid>https://orcid.org/0000000272871820</orcidid><orcidid>https://orcid.org/0000000285372967</orcidid></search><sort><creationdate>20201021</creationdate><title>Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces</title><author>van Maris, Victor R. ; Hauschild, Dirk ; Niesen, Thomas P. ; Eraerds, Patrick ; Dalibor, Thomas ; Palm, Jörg ; Blum, Monika ; Yang, Wanli ; Heske, Clemens ; Weinhardt, Lothar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2343-c4af779e59896b962212c8856ddc0fd4864559ef220ddb9ad42011dd70cd08953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Adsorbates</topic><topic>Applied physics</topic><topic>Buffer layers</topic><topic>Carbon</topic><topic>Chalcopyrite</topic><topic>Copper</topic><topic>Deposition</topic><topic>Excitation spectra</topic><topic>Ion cleaning</topic><topic>Oxidation</topic><topic>Oxygen content</topic><topic>Ozone</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Selenium</topic><topic>Soft x rays</topic><topic>Solar cells</topic><topic>Spectrum analysis</topic><topic>Surface structure</topic><topic>Synchrotrons</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Maris, Victor R.</creatorcontrib><creatorcontrib>Hauschild, Dirk</creatorcontrib><creatorcontrib>Niesen, Thomas P.</creatorcontrib><creatorcontrib>Eraerds, Patrick</creatorcontrib><creatorcontrib>Dalibor, Thomas</creatorcontrib><creatorcontrib>Palm, Jörg</creatorcontrib><creatorcontrib>Blum, Monika</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Heske, Clemens</creatorcontrib><creatorcontrib>Weinhardt, Lothar</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Maris, Victor R.</au><au>Hauschild, Dirk</au><au>Niesen, Thomas P.</au><au>Eraerds, Patrick</au><au>Dalibor, Thomas</au><au>Palm, Jörg</au><au>Blum, Monika</au><au>Yang, Wanli</au><au>Heske, Clemens</au><au>Weinhardt, Lothar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces</atitle><jtitle>Journal of applied physics</jtitle><date>2020-10-21</date><risdate>2020</risdate><volume>128</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning steps. To study the impact of these treatments, the chemical surface structure of a CIGSSe absorber is investigated. For this purpose, a set of surface-sensitive spectroscopic methods, i.e., laboratory-based x-ray photoelectron spectroscopy and x-ray-excited Auger electron spectroscopy, is combined with synchrotron-based soft x-ray emission spectroscopy. After treatment times as short as 15 s, the UV-induced ozone treatment decreases the amount of carbon adsorbates at the CIGSSe surface significantly, while the oxygen content increases. This is accompanied by the oxidation of all absorber surface elements, i.e., indium, selenium, sulfur, and copper. Short (60 s) low-energy Ar+-ion treatments, in contrast, primarily remove oxygen from the surface. Longer treatment times also lead to a removal of carbon, while extremely long treatment times can also lead to additional (likely metallic) Cu phases at the absorber surface as well.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020253</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2918-9092</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0001-9088-8944</orcidid><orcidid>https://orcid.org/0000-0003-1178-6793</orcidid><orcidid>https://orcid.org/0000-0001-7586-4549</orcidid><orcidid>https://orcid.org/0000-0002-7287-1820</orcidid><orcidid>https://orcid.org/0000-0002-8537-2967</orcidid><orcidid>https://orcid.org/0000-0003-3361-1054</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000190888944</orcidid><orcidid>https://orcid.org/0000000229189092</orcidid><orcidid>https://orcid.org/0000000175864549</orcidid><orcidid>https://orcid.org/0000000311786793</orcidid><orcidid>https://orcid.org/0000000333611054</orcidid><orcidid>https://orcid.org/0000000272871820</orcidid><orcidid>https://orcid.org/0000000285372967</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-10, Vol.128 (15) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_1770001 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorbers Adsorbates Applied physics Buffer layers Carbon Chalcopyrite Copper Deposition Excitation spectra Ion cleaning Oxidation Oxygen content Ozone Photoelectrons Photovoltaic cells Selenium Soft x rays Solar cells Spectrum analysis Surface structure Synchrotrons Thin films X ray photoelectron spectroscopy |
title | Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20UV-induced%20ozone%20and%20low-energy%20Ar+-ion%20cleaning%20on%20the%20chemical%20structure%20of%20Cu(In,Ga)(S,Se)2%20absorber%20surfaces&rft.jtitle=Journal%20of%20applied%20physics&rft.au=van%20Maris,%20Victor%20R.&rft.date=2020-10-21&rft.volume=128&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0020253&rft_dat=%3Cproquest_osti_%3E2451209071%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451209071&rft_id=info:pmid/&rfr_iscdi=true |