Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces

Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-10, Vol.128 (15)
Hauptverfasser: van Maris, Victor R., Hauschild, Dirk, Niesen, Thomas P., Eraerds, Patrick, Dalibor, Thomas, Palm, Jörg, Blum, Monika, Yang, Wanli, Heske, Clemens, Weinhardt, Lothar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Journal of applied physics
container_volume 128
creator van Maris, Victor R.
Hauschild, Dirk
Niesen, Thomas P.
Eraerds, Patrick
Dalibor, Thomas
Palm, Jörg
Blum, Monika
Yang, Wanli
Heske, Clemens
Weinhardt, Lothar
description Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning steps. To study the impact of these treatments, the chemical surface structure of a CIGSSe absorber is investigated. For this purpose, a set of surface-sensitive spectroscopic methods, i.e., laboratory-based x-ray photoelectron spectroscopy and x-ray-excited Auger electron spectroscopy, is combined with synchrotron-based soft x-ray emission spectroscopy. After treatment times as short as 15 s, the UV-induced ozone treatment decreases the amount of carbon adsorbates at the CIGSSe surface significantly, while the oxygen content increases. This is accompanied by the oxidation of all absorber surface elements, i.e., indium, selenium, sulfur, and copper. Short (60 s) low-energy Ar+-ion treatments, in contrast, primarily remove oxygen from the surface. Longer treatment times also lead to a removal of carbon, while extremely long treatment times can also lead to additional (likely metallic) Cu phases at the absorber surface as well.
doi_str_mv 10.1063/5.0020253
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1770001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451209071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2343-c4af779e59896b962212c8856ddc0fd4864559ef220ddb9ad42011dd70cd08953</originalsourceid><addsrcrecordid>eNqdkMFOGzEQhq2qSE2hB97Aai8E2GB717vrI4ogRELiAOnVcsazZFFip7YXRJ4eR0HqndOMRp_-mfkIOeVswlldXskJY4IJWX4jI85aVTRSsu9klKe8aFWjfpCfMb4wxnlbqhHZzTdbA4n6ji7-Fr2zA6ClfucdUuMsXfu3Ah2G53d6HS6K3jsKazSud88092mFFFa46cGsaUxhgDQE3KdNh7O5u5yZ8dnj5SOOBTXL6MMSA41D6AxgPCFHnVlH_PVZj8ni9uZpelfcP8zm0-v7AkRZlQVUpmsahVK1ql6qWgguoG1lbS2wzlZtXUmpsBOCWbtUxlYiP2dtw8BmAbI8Jr8PuT6mXkfoE8IKvHMISfOmYVlGhv4coG3w_waMSb_4Ibh8lxaV5IIp1uyp8YGC4GMM2Olt6DcmvGvO9N6_lvrTf2bPD-x-o0nZ3NfgVx_-g3pru_IDcqqQ0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451209071</pqid></control><display><type>article</type><title>Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>van Maris, Victor R. ; Hauschild, Dirk ; Niesen, Thomas P. ; Eraerds, Patrick ; Dalibor, Thomas ; Palm, Jörg ; Blum, Monika ; Yang, Wanli ; Heske, Clemens ; Weinhardt, Lothar</creator><creatorcontrib>van Maris, Victor R. ; Hauschild, Dirk ; Niesen, Thomas P. ; Eraerds, Patrick ; Dalibor, Thomas ; Palm, Jörg ; Blum, Monika ; Yang, Wanli ; Heske, Clemens ; Weinhardt, Lothar</creatorcontrib><description>Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning steps. To study the impact of these treatments, the chemical surface structure of a CIGSSe absorber is investigated. For this purpose, a set of surface-sensitive spectroscopic methods, i.e., laboratory-based x-ray photoelectron spectroscopy and x-ray-excited Auger electron spectroscopy, is combined with synchrotron-based soft x-ray emission spectroscopy. After treatment times as short as 15 s, the UV-induced ozone treatment decreases the amount of carbon adsorbates at the CIGSSe surface significantly, while the oxygen content increases. This is accompanied by the oxidation of all absorber surface elements, i.e., indium, selenium, sulfur, and copper. Short (60 s) low-energy Ar+-ion treatments, in contrast, primarily remove oxygen from the surface. Longer treatment times also lead to a removal of carbon, while extremely long treatment times can also lead to additional (likely metallic) Cu phases at the absorber surface as well.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0020253</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorbers ; Adsorbates ; Applied physics ; Buffer layers ; Carbon ; Chalcopyrite ; Copper ; Deposition ; Excitation spectra ; Ion cleaning ; Oxidation ; Oxygen content ; Ozone ; Photoelectrons ; Photovoltaic cells ; Selenium ; Soft x rays ; Solar cells ; Spectrum analysis ; Surface structure ; Synchrotrons ; Thin films ; X ray photoelectron spectroscopy</subject><ispartof>Journal of applied physics, 2020-10, Vol.128 (15)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2343-c4af779e59896b962212c8856ddc0fd4864559ef220ddb9ad42011dd70cd08953</citedby><cites>FETCH-LOGICAL-c2343-c4af779e59896b962212c8856ddc0fd4864559ef220ddb9ad42011dd70cd08953</cites><orcidid>0000-0002-2918-9092 ; 0000-0003-0666-8063 ; 0000-0001-9088-8944 ; 0000-0003-1178-6793 ; 0000-0001-7586-4549 ; 0000-0002-7287-1820 ; 0000-0002-8537-2967 ; 0000-0003-3361-1054 ; 0000000306668063 ; 0000000190888944 ; 0000000229189092 ; 0000000175864549 ; 0000000311786793 ; 0000000333611054 ; 0000000272871820 ; 0000000285372967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0020253$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1770001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>van Maris, Victor R.</creatorcontrib><creatorcontrib>Hauschild, Dirk</creatorcontrib><creatorcontrib>Niesen, Thomas P.</creatorcontrib><creatorcontrib>Eraerds, Patrick</creatorcontrib><creatorcontrib>Dalibor, Thomas</creatorcontrib><creatorcontrib>Palm, Jörg</creatorcontrib><creatorcontrib>Blum, Monika</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Heske, Clemens</creatorcontrib><creatorcontrib>Weinhardt, Lothar</creatorcontrib><title>Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces</title><title>Journal of applied physics</title><description>Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning steps. To study the impact of these treatments, the chemical surface structure of a CIGSSe absorber is investigated. For this purpose, a set of surface-sensitive spectroscopic methods, i.e., laboratory-based x-ray photoelectron spectroscopy and x-ray-excited Auger electron spectroscopy, is combined with synchrotron-based soft x-ray emission spectroscopy. After treatment times as short as 15 s, the UV-induced ozone treatment decreases the amount of carbon adsorbates at the CIGSSe surface significantly, while the oxygen content increases. This is accompanied by the oxidation of all absorber surface elements, i.e., indium, selenium, sulfur, and copper. Short (60 s) low-energy Ar+-ion treatments, in contrast, primarily remove oxygen from the surface. Longer treatment times also lead to a removal of carbon, while extremely long treatment times can also lead to additional (likely metallic) Cu phases at the absorber surface as well.</description><subject>Absorbers</subject><subject>Adsorbates</subject><subject>Applied physics</subject><subject>Buffer layers</subject><subject>Carbon</subject><subject>Chalcopyrite</subject><subject>Copper</subject><subject>Deposition</subject><subject>Excitation spectra</subject><subject>Ion cleaning</subject><subject>Oxidation</subject><subject>Oxygen content</subject><subject>Ozone</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Selenium</subject><subject>Soft x rays</subject><subject>Solar cells</subject><subject>Spectrum analysis</subject><subject>Surface structure</subject><subject>Synchrotrons</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkMFOGzEQhq2qSE2hB97Aai8E2GB717vrI4ogRELiAOnVcsazZFFip7YXRJ4eR0HqndOMRp_-mfkIOeVswlldXskJY4IJWX4jI85aVTRSsu9klKe8aFWjfpCfMb4wxnlbqhHZzTdbA4n6ji7-Fr2zA6ClfucdUuMsXfu3Ah2G53d6HS6K3jsKazSud88092mFFFa46cGsaUxhgDQE3KdNh7O5u5yZ8dnj5SOOBTXL6MMSA41D6AxgPCFHnVlH_PVZj8ni9uZpelfcP8zm0-v7AkRZlQVUpmsahVK1ql6qWgguoG1lbS2wzlZtXUmpsBOCWbtUxlYiP2dtw8BmAbI8Jr8PuT6mXkfoE8IKvHMISfOmYVlGhv4coG3w_waMSb_4Ibh8lxaV5IIp1uyp8YGC4GMM2Olt6DcmvGvO9N6_lvrTf2bPD-x-o0nZ3NfgVx_-g3pru_IDcqqQ0w</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>van Maris, Victor R.</creator><creator>Hauschild, Dirk</creator><creator>Niesen, Thomas P.</creator><creator>Eraerds, Patrick</creator><creator>Dalibor, Thomas</creator><creator>Palm, Jörg</creator><creator>Blum, Monika</creator><creator>Yang, Wanli</creator><creator>Heske, Clemens</creator><creator>Weinhardt, Lothar</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2918-9092</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0001-9088-8944</orcidid><orcidid>https://orcid.org/0000-0003-1178-6793</orcidid><orcidid>https://orcid.org/0000-0001-7586-4549</orcidid><orcidid>https://orcid.org/0000-0002-7287-1820</orcidid><orcidid>https://orcid.org/0000-0002-8537-2967</orcidid><orcidid>https://orcid.org/0000-0003-3361-1054</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000190888944</orcidid><orcidid>https://orcid.org/0000000229189092</orcidid><orcidid>https://orcid.org/0000000175864549</orcidid><orcidid>https://orcid.org/0000000311786793</orcidid><orcidid>https://orcid.org/0000000333611054</orcidid><orcidid>https://orcid.org/0000000272871820</orcidid><orcidid>https://orcid.org/0000000285372967</orcidid></search><sort><creationdate>20201021</creationdate><title>Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces</title><author>van Maris, Victor R. ; Hauschild, Dirk ; Niesen, Thomas P. ; Eraerds, Patrick ; Dalibor, Thomas ; Palm, Jörg ; Blum, Monika ; Yang, Wanli ; Heske, Clemens ; Weinhardt, Lothar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2343-c4af779e59896b962212c8856ddc0fd4864559ef220ddb9ad42011dd70cd08953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Adsorbates</topic><topic>Applied physics</topic><topic>Buffer layers</topic><topic>Carbon</topic><topic>Chalcopyrite</topic><topic>Copper</topic><topic>Deposition</topic><topic>Excitation spectra</topic><topic>Ion cleaning</topic><topic>Oxidation</topic><topic>Oxygen content</topic><topic>Ozone</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Selenium</topic><topic>Soft x rays</topic><topic>Solar cells</topic><topic>Spectrum analysis</topic><topic>Surface structure</topic><topic>Synchrotrons</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Maris, Victor R.</creatorcontrib><creatorcontrib>Hauschild, Dirk</creatorcontrib><creatorcontrib>Niesen, Thomas P.</creatorcontrib><creatorcontrib>Eraerds, Patrick</creatorcontrib><creatorcontrib>Dalibor, Thomas</creatorcontrib><creatorcontrib>Palm, Jörg</creatorcontrib><creatorcontrib>Blum, Monika</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Heske, Clemens</creatorcontrib><creatorcontrib>Weinhardt, Lothar</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Maris, Victor R.</au><au>Hauschild, Dirk</au><au>Niesen, Thomas P.</au><au>Eraerds, Patrick</au><au>Dalibor, Thomas</au><au>Palm, Jörg</au><au>Blum, Monika</au><au>Yang, Wanli</au><au>Heske, Clemens</au><au>Weinhardt, Lothar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces</atitle><jtitle>Journal of applied physics</jtitle><date>2020-10-21</date><risdate>2020</risdate><volume>128</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Dry buffer layer deposition techniques for chalcopyrite (CIGSSe)-based thin-film solar cells lack the surface-cleaning characteristics of the commonly used CdS or Zn(O,S) wet-chemical bath deposition. A UV-induced ozone and/or a low-energy Ar+-ion treatment could provide dry CIGSSe surface cleaning steps. To study the impact of these treatments, the chemical surface structure of a CIGSSe absorber is investigated. For this purpose, a set of surface-sensitive spectroscopic methods, i.e., laboratory-based x-ray photoelectron spectroscopy and x-ray-excited Auger electron spectroscopy, is combined with synchrotron-based soft x-ray emission spectroscopy. After treatment times as short as 15 s, the UV-induced ozone treatment decreases the amount of carbon adsorbates at the CIGSSe surface significantly, while the oxygen content increases. This is accompanied by the oxidation of all absorber surface elements, i.e., indium, selenium, sulfur, and copper. Short (60 s) low-energy Ar+-ion treatments, in contrast, primarily remove oxygen from the surface. Longer treatment times also lead to a removal of carbon, while extremely long treatment times can also lead to additional (likely metallic) Cu phases at the absorber surface as well.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020253</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2918-9092</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0001-9088-8944</orcidid><orcidid>https://orcid.org/0000-0003-1178-6793</orcidid><orcidid>https://orcid.org/0000-0001-7586-4549</orcidid><orcidid>https://orcid.org/0000-0002-7287-1820</orcidid><orcidid>https://orcid.org/0000-0002-8537-2967</orcidid><orcidid>https://orcid.org/0000-0003-3361-1054</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000190888944</orcidid><orcidid>https://orcid.org/0000000229189092</orcidid><orcidid>https://orcid.org/0000000175864549</orcidid><orcidid>https://orcid.org/0000000311786793</orcidid><orcidid>https://orcid.org/0000000333611054</orcidid><orcidid>https://orcid.org/0000000272871820</orcidid><orcidid>https://orcid.org/0000000285372967</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-10, Vol.128 (15)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1770001
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorbers
Adsorbates
Applied physics
Buffer layers
Carbon
Chalcopyrite
Copper
Deposition
Excitation spectra
Ion cleaning
Oxidation
Oxygen content
Ozone
Photoelectrons
Photovoltaic cells
Selenium
Soft x rays
Solar cells
Spectrum analysis
Surface structure
Synchrotrons
Thin films
X ray photoelectron spectroscopy
title Impact of UV-induced ozone and low-energy Ar+-ion cleaning on the chemical structure of Cu(In,Ga)(S,Se)2 absorber surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20UV-induced%20ozone%20and%20low-energy%20Ar+-ion%20cleaning%20on%20the%20chemical%20structure%20of%20Cu(In,Ga)(S,Se)2%20absorber%20surfaces&rft.jtitle=Journal%20of%20applied%20physics&rft.au=van%20Maris,%20Victor%20R.&rft.date=2020-10-21&rft.volume=128&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0020253&rft_dat=%3Cproquest_osti_%3E2451209071%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451209071&rft_id=info:pmid/&rfr_iscdi=true