Revealing and Elucidating ALD‐Derived Control of Lithium Plating Microstructure
The practical implementation of Li metal batteries is hindered by difficulties in controlling the Li metal plating microstructure. While previous atomic layer deposition (ALD) studies have focused on directly coating Li metal with thin films for the passivation of the electrode–electrolyte interface...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2020-11, Vol.10 (44), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 44 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 10 |
creator | Oyakhire, Solomon T. Huang, William Wang, Hansen Boyle, David T. Schneider, Joel R. Paula, Camila Wu, Yecun Cui, Yi Bent, Stacey F. |
description | The practical implementation of Li metal batteries is hindered by difficulties in controlling the Li metal plating microstructure. While previous atomic layer deposition (ALD) studies have focused on directly coating Li metal with thin films for the passivation of the electrode–electrolyte interface, a different approach is adopted, situating the ALD film beneath Li metal and directly on the copper current collector. A mechanistic explanation for this simple strategy of controlling the Li metal plating microstructure using TiO2 grown on copper foil by ALD is presented. In contrast to previous studies where ALD‐grown layers act as artificial interphases, this TiO2 layer resides at the copper–Li metal interface, acting as a nucleation layer to improve the Li metal plating morphology. Upon lithiation of TiO2, a LixTiO2 complex forms; this alloy provides a lithiophilic surface layer that enables uniform and reversible Li plating. The reversibility of lithium deposition is evident from the champion cell (5 nm TiO2), which displays an average Coulombic efficiency (CE) of 96% after 150 cycles at a moderate current density of 1 mA cm−2. This simple approach provides the first account of the mechanism of ALD‐derived Li nucleation control and suggests new possibilities for future ALD‐synthesized nucleation layers.
A thin film of atomic layer deposition (ALD)‐grown TiO2 deposited on a copper current collector enables uniform and stable nucleation of lithium metal by forming a lithiophilic layer of LixTiO2 and reducing the overpotential for lithium deposition. Growing atomically precise thin films on copper current collectors is a promising strategy for lithium nucleation control. |
doi_str_mv | 10.1002/aenm.202002736 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1769887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463526249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3846-80d3adb5c8ebb9763193bafa32e33f11dca3fb75c14820ed8bb836046c3687cb3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EElXplnUE6xTb4zrOsmrLQ0p5CdaW4zjUVZoUxynqjk_gG_kSEgWVJbOZGenceVyEzgkeE4zplTLlZkwxbesI-BEaEE5YyAXDx4ca6Cka1fUat8FiggEG6OnZ7IwqbPkWqDILFkWjbaZ810-T-ffn19w4uzNZMKtK76oiqPIgsX5lm03wWPTg0mpX1d412jfOnKGTXBW1Gf3mIXq9XrzMbsPk4eZuNk1CDYLxUOAMVJZOtDBpGkccSAypyhVQA5ATkmkFeRpNNGGCYpOJNBXAMeMauIh0CkN00c9tV1tZa-uNXumqLI32kkQ8FiJqocse2rrqvTG1l-uqcWV7l6SMw4RyyuKWGvdU90ftTC63zm6U20uCZWev7OyVB3tbQdwLPmxh9v_Qcrq4X_5pfwD3A36_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463526249</pqid></control><display><type>article</type><title>Revealing and Elucidating ALD‐Derived Control of Lithium Plating Microstructure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oyakhire, Solomon T. ; Huang, William ; Wang, Hansen ; Boyle, David T. ; Schneider, Joel R. ; Paula, Camila ; Wu, Yecun ; Cui, Yi ; Bent, Stacey F.</creator><creatorcontrib>Oyakhire, Solomon T. ; Huang, William ; Wang, Hansen ; Boyle, David T. ; Schneider, Joel R. ; Paula, Camila ; Wu, Yecun ; Cui, Yi ; Bent, Stacey F. ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>The practical implementation of Li metal batteries is hindered by difficulties in controlling the Li metal plating microstructure. While previous atomic layer deposition (ALD) studies have focused on directly coating Li metal with thin films for the passivation of the electrode–electrolyte interface, a different approach is adopted, situating the ALD film beneath Li metal and directly on the copper current collector. A mechanistic explanation for this simple strategy of controlling the Li metal plating microstructure using TiO2 grown on copper foil by ALD is presented. In contrast to previous studies where ALD‐grown layers act as artificial interphases, this TiO2 layer resides at the copper–Li metal interface, acting as a nucleation layer to improve the Li metal plating morphology. Upon lithiation of TiO2, a LixTiO2 complex forms; this alloy provides a lithiophilic surface layer that enables uniform and reversible Li plating. The reversibility of lithium deposition is evident from the champion cell (5 nm TiO2), which displays an average Coulombic efficiency (CE) of 96% after 150 cycles at a moderate current density of 1 mA cm−2. This simple approach provides the first account of the mechanism of ALD‐derived Li nucleation control and suggests new possibilities for future ALD‐synthesized nucleation layers.
A thin film of atomic layer deposition (ALD)‐grown TiO2 deposited on a copper current collector enables uniform and stable nucleation of lithium metal by forming a lithiophilic layer of LixTiO2 and reducing the overpotential for lithium deposition. Growing atomically precise thin films on copper current collectors is a promising strategy for lithium nucleation control.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202002736</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>atomic layer deposition ; Atomic layer epitaxy ; Copper ; Copper plating ; ENERGY STORAGE ; Lithium ; lithium metal ; Metal foils ; Microstructure ; Morphology ; Nucleation ; Surface layers ; Thin films ; Titanium dioxide</subject><ispartof>Advanced energy materials, 2020-11, Vol.10 (44), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3846-80d3adb5c8ebb9763193bafa32e33f11dca3fb75c14820ed8bb836046c3687cb3</citedby><cites>FETCH-LOGICAL-c3846-80d3adb5c8ebb9763193bafa32e33f11dca3fb75c14820ed8bb836046c3687cb3</cites><orcidid>0000-0002-3189-5949 ; 0000000231895949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202002736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202002736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1769887$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oyakhire, Solomon T.</creatorcontrib><creatorcontrib>Huang, William</creatorcontrib><creatorcontrib>Wang, Hansen</creatorcontrib><creatorcontrib>Boyle, David T.</creatorcontrib><creatorcontrib>Schneider, Joel R.</creatorcontrib><creatorcontrib>Paula, Camila</creatorcontrib><creatorcontrib>Wu, Yecun</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Bent, Stacey F.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Revealing and Elucidating ALD‐Derived Control of Lithium Plating Microstructure</title><title>Advanced energy materials</title><description>The practical implementation of Li metal batteries is hindered by difficulties in controlling the Li metal plating microstructure. While previous atomic layer deposition (ALD) studies have focused on directly coating Li metal with thin films for the passivation of the electrode–electrolyte interface, a different approach is adopted, situating the ALD film beneath Li metal and directly on the copper current collector. A mechanistic explanation for this simple strategy of controlling the Li metal plating microstructure using TiO2 grown on copper foil by ALD is presented. In contrast to previous studies where ALD‐grown layers act as artificial interphases, this TiO2 layer resides at the copper–Li metal interface, acting as a nucleation layer to improve the Li metal plating morphology. Upon lithiation of TiO2, a LixTiO2 complex forms; this alloy provides a lithiophilic surface layer that enables uniform and reversible Li plating. The reversibility of lithium deposition is evident from the champion cell (5 nm TiO2), which displays an average Coulombic efficiency (CE) of 96% after 150 cycles at a moderate current density of 1 mA cm−2. This simple approach provides the first account of the mechanism of ALD‐derived Li nucleation control and suggests new possibilities for future ALD‐synthesized nucleation layers.
A thin film of atomic layer deposition (ALD)‐grown TiO2 deposited on a copper current collector enables uniform and stable nucleation of lithium metal by forming a lithiophilic layer of LixTiO2 and reducing the overpotential for lithium deposition. Growing atomically precise thin films on copper current collectors is a promising strategy for lithium nucleation control.</description><subject>atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Copper</subject><subject>Copper plating</subject><subject>ENERGY STORAGE</subject><subject>Lithium</subject><subject>lithium metal</subject><subject>Metal foils</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Surface layers</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EElXplnUE6xTb4zrOsmrLQ0p5CdaW4zjUVZoUxynqjk_gG_kSEgWVJbOZGenceVyEzgkeE4zplTLlZkwxbesI-BEaEE5YyAXDx4ca6Cka1fUat8FiggEG6OnZ7IwqbPkWqDILFkWjbaZ810-T-ffn19w4uzNZMKtK76oiqPIgsX5lm03wWPTg0mpX1d412jfOnKGTXBW1Gf3mIXq9XrzMbsPk4eZuNk1CDYLxUOAMVJZOtDBpGkccSAypyhVQA5ATkmkFeRpNNGGCYpOJNBXAMeMauIh0CkN00c9tV1tZa-uNXumqLI32kkQ8FiJqocse2rrqvTG1l-uqcWV7l6SMw4RyyuKWGvdU90ftTC63zm6U20uCZWev7OyVB3tbQdwLPmxh9v_Qcrq4X_5pfwD3A36_</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Oyakhire, Solomon T.</creator><creator>Huang, William</creator><creator>Wang, Hansen</creator><creator>Boyle, David T.</creator><creator>Schneider, Joel R.</creator><creator>Paula, Camila</creator><creator>Wu, Yecun</creator><creator>Cui, Yi</creator><creator>Bent, Stacey F.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3189-5949</orcidid><orcidid>https://orcid.org/0000000231895949</orcidid></search><sort><creationdate>20201101</creationdate><title>Revealing and Elucidating ALD‐Derived Control of Lithium Plating Microstructure</title><author>Oyakhire, Solomon T. ; Huang, William ; Wang, Hansen ; Boyle, David T. ; Schneider, Joel R. ; Paula, Camila ; Wu, Yecun ; Cui, Yi ; Bent, Stacey F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3846-80d3adb5c8ebb9763193bafa32e33f11dca3fb75c14820ed8bb836046c3687cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Copper</topic><topic>Copper plating</topic><topic>ENERGY STORAGE</topic><topic>Lithium</topic><topic>lithium metal</topic><topic>Metal foils</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Surface layers</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oyakhire, Solomon T.</creatorcontrib><creatorcontrib>Huang, William</creatorcontrib><creatorcontrib>Wang, Hansen</creatorcontrib><creatorcontrib>Boyle, David T.</creatorcontrib><creatorcontrib>Schneider, Joel R.</creatorcontrib><creatorcontrib>Paula, Camila</creatorcontrib><creatorcontrib>Wu, Yecun</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Bent, Stacey F.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oyakhire, Solomon T.</au><au>Huang, William</au><au>Wang, Hansen</au><au>Boyle, David T.</au><au>Schneider, Joel R.</au><au>Paula, Camila</au><au>Wu, Yecun</au><au>Cui, Yi</au><au>Bent, Stacey F.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing and Elucidating ALD‐Derived Control of Lithium Plating Microstructure</atitle><jtitle>Advanced energy materials</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>10</volume><issue>44</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The practical implementation of Li metal batteries is hindered by difficulties in controlling the Li metal plating microstructure. While previous atomic layer deposition (ALD) studies have focused on directly coating Li metal with thin films for the passivation of the electrode–electrolyte interface, a different approach is adopted, situating the ALD film beneath Li metal and directly on the copper current collector. A mechanistic explanation for this simple strategy of controlling the Li metal plating microstructure using TiO2 grown on copper foil by ALD is presented. In contrast to previous studies where ALD‐grown layers act as artificial interphases, this TiO2 layer resides at the copper–Li metal interface, acting as a nucleation layer to improve the Li metal plating morphology. Upon lithiation of TiO2, a LixTiO2 complex forms; this alloy provides a lithiophilic surface layer that enables uniform and reversible Li plating. The reversibility of lithium deposition is evident from the champion cell (5 nm TiO2), which displays an average Coulombic efficiency (CE) of 96% after 150 cycles at a moderate current density of 1 mA cm−2. This simple approach provides the first account of the mechanism of ALD‐derived Li nucleation control and suggests new possibilities for future ALD‐synthesized nucleation layers.
A thin film of atomic layer deposition (ALD)‐grown TiO2 deposited on a copper current collector enables uniform and stable nucleation of lithium metal by forming a lithiophilic layer of LixTiO2 and reducing the overpotential for lithium deposition. Growing atomically precise thin films on copper current collectors is a promising strategy for lithium nucleation control.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202002736</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3189-5949</orcidid><orcidid>https://orcid.org/0000000231895949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2020-11, Vol.10 (44), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1769887 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | atomic layer deposition Atomic layer epitaxy Copper Copper plating ENERGY STORAGE Lithium lithium metal Metal foils Microstructure Morphology Nucleation Surface layers Thin films Titanium dioxide |
title | Revealing and Elucidating ALD‐Derived Control of Lithium Plating Microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20and%20Elucidating%20ALD%E2%80%90Derived%20Control%20of%20Lithium%20Plating%20Microstructure&rft.jtitle=Advanced%20energy%20materials&rft.au=Oyakhire,%20Solomon%20T.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-11-01&rft.volume=10&rft.issue=44&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202002736&rft_dat=%3Cproquest_osti_%3E2463526249%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463526249&rft_id=info:pmid/&rfr_iscdi=true |