Beating absorption in solid-state high harmonics

Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electron’s natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications physics 2020-10, Vol.3 (1), Article 192
Hauptverfasser: Liu, Hanzhe, Vampa, Giulio, Zhang, Jingyuan Linda, Shi, Yu, Buddhiraju, Siddharth, Fan, Shanhui, Vuckovic, Jelena, Bucksbaum, Philip H., Reis, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Communications physics
container_volume 3
creator Liu, Hanzhe
Vampa, Giulio
Zhang, Jingyuan Linda
Shi, Yu
Buddhiraju, Siddharth
Fan, Shanhui
Vuckovic, Jelena
Bucksbaum, Philip H.
Reis, David A.
description Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electron’s natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by generating high-order harmonics from a periodic array of thin one-dimensional crystalline silicon ridge waveguides. Adding vacuum gaps between the ridges avoids the high absorption loss of the bulk and results in a ~ 100-fold increase of the extraction depth. As the grating period is varied, each high harmonic shows a different and marked modulation, indicating their waveguiding in the vacuum slots with reduced absorption. Looking ahead, our results enable bright on-chip coherent short-wavelength sources and may extend the usable spectral range of traditional nonlinear crystals to their absorption windows. Potential applications include on-chip chemically-sensitive spectro-nanoscopy. Control of nonlinear optical processes at the nanoscale is vital for the generation of on-chip short-wavelength sources, yet strong re-absorption of this radiation limits its efficiency in solids. Here, high harmonics are generated in an array of 1D silicon ridge waveguides, mitigating bulk re-absorption.
doi_str_mv 10.1038/s42005-020-00472-5
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1769609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471529288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-d5e9ab729c5bc745e0688b3acaa5034662b4d788b09d71d40222e5d9ca1fee443</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLR_wNOi5-jka7M5avELCl70HLLZtJvSJjVJD_57oyvoydMMw_O-DA9CFwSuCbDuJnMKIDBQwABcUiyO0IwypTBrBRz_2U_RPOcNAFDCQbJ2huDOmeLDujF9jmlffAyND02OWz_gXExxzejXYzOatIvB23yOTlZmm938Z56ht4f718UTXr48Pi9ul9gyBQUPwinTS6qs6K3kwkHbdT0z1hgBjLct7fkg6wnUIMnAgVLqxKCsISvnOGdn6HLqjbl4na0vzo42huBs0US2qgVVoasJ2qf4fnC56E08pFD_0pRLIqiiXVcpOlE2xZyTW-l98juTPjQB_WVQTwZ1Nai_DWpRQ2wK5QqHtUu_1f-kPgHsenF8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471529288</pqid></control><display><type>article</type><title>Beating absorption in solid-state high harmonics</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Liu, Hanzhe ; Vampa, Giulio ; Zhang, Jingyuan Linda ; Shi, Yu ; Buddhiraju, Siddharth ; Fan, Shanhui ; Vuckovic, Jelena ; Bucksbaum, Philip H. ; Reis, David A.</creator><creatorcontrib>Liu, Hanzhe ; Vampa, Giulio ; Zhang, Jingyuan Linda ; Shi, Yu ; Buddhiraju, Siddharth ; Fan, Shanhui ; Vuckovic, Jelena ; Bucksbaum, Philip H. ; Reis, David A. ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electron’s natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by generating high-order harmonics from a periodic array of thin one-dimensional crystalline silicon ridge waveguides. Adding vacuum gaps between the ridges avoids the high absorption loss of the bulk and results in a ~ 100-fold increase of the extraction depth. As the grating period is varied, each high harmonic shows a different and marked modulation, indicating their waveguiding in the vacuum slots with reduced absorption. Looking ahead, our results enable bright on-chip coherent short-wavelength sources and may extend the usable spectral range of traditional nonlinear crystals to their absorption windows. Potential applications include on-chip chemically-sensitive spectro-nanoscopy. Control of nonlinear optical processes at the nanoscale is vital for the generation of on-chip short-wavelength sources, yet strong re-absorption of this radiation limits its efficiency in solids. Here, high harmonics are generated in an array of 1D silicon ridge waveguides, mitigating bulk re-absorption.</description><identifier>ISSN: 2399-3650</identifier><identifier>EISSN: 2399-3650</identifier><identifier>DOI: 10.1038/s42005-020-00472-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/1103 ; 639/624/400/3923 ; Absorption ; Arrays ; Coherence ; Harmonics ; Infrared lasers ; Laser applications ; Nonlinear control ; Photons ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Silicon ; Soft x rays ; Upconversion ; Waveguides</subject><ispartof>Communications physics, 2020-10, Vol.3 (1), Article 192</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-d5e9ab729c5bc745e0688b3acaa5034662b4d788b09d71d40222e5d9ca1fee443</citedby><cites>FETCH-LOGICAL-c390t-d5e9ab729c5bc745e0688b3acaa5034662b4d788b09d71d40222e5d9ca1fee443</cites><orcidid>0000-0002-1576-7533 ; 0000-0002-0081-9732 ; 0000-0002-4603-9686 ; 0000-0002-6481-4703 ; 0000000215767533 ; 0000000246039686 ; 0000000200819732 ; 0000000264814703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42005-020-00472-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s42005-020-00472-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27903,27904,41099,42168,51554</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1769609$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Hanzhe</creatorcontrib><creatorcontrib>Vampa, Giulio</creatorcontrib><creatorcontrib>Zhang, Jingyuan Linda</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Buddhiraju, Siddharth</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Vuckovic, Jelena</creatorcontrib><creatorcontrib>Bucksbaum, Philip H.</creatorcontrib><creatorcontrib>Reis, David A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Beating absorption in solid-state high harmonics</title><title>Communications physics</title><addtitle>Commun Phys</addtitle><description>Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electron’s natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by generating high-order harmonics from a periodic array of thin one-dimensional crystalline silicon ridge waveguides. Adding vacuum gaps between the ridges avoids the high absorption loss of the bulk and results in a ~ 100-fold increase of the extraction depth. As the grating period is varied, each high harmonic shows a different and marked modulation, indicating their waveguiding in the vacuum slots with reduced absorption. Looking ahead, our results enable bright on-chip coherent short-wavelength sources and may extend the usable spectral range of traditional nonlinear crystals to their absorption windows. Potential applications include on-chip chemically-sensitive spectro-nanoscopy. Control of nonlinear optical processes at the nanoscale is vital for the generation of on-chip short-wavelength sources, yet strong re-absorption of this radiation limits its efficiency in solids. Here, high harmonics are generated in an array of 1D silicon ridge waveguides, mitigating bulk re-absorption.</description><subject>639/624/400/1103</subject><subject>639/624/400/3923</subject><subject>Absorption</subject><subject>Arrays</subject><subject>Coherence</subject><subject>Harmonics</subject><subject>Infrared lasers</subject><subject>Laser applications</subject><subject>Nonlinear control</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Silicon</subject><subject>Soft x rays</subject><subject>Upconversion</subject><subject>Waveguides</subject><issn>2399-3650</issn><issn>2399-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWLR_wNOi5-jka7M5avELCl70HLLZtJvSJjVJD_57oyvoydMMw_O-DA9CFwSuCbDuJnMKIDBQwABcUiyO0IwypTBrBRz_2U_RPOcNAFDCQbJ2huDOmeLDujF9jmlffAyND02OWz_gXExxzejXYzOatIvB23yOTlZmm938Z56ht4f718UTXr48Pi9ul9gyBQUPwinTS6qs6K3kwkHbdT0z1hgBjLct7fkg6wnUIMnAgVLqxKCsISvnOGdn6HLqjbl4na0vzo42huBs0US2qgVVoasJ2qf4fnC56E08pFD_0pRLIqiiXVcpOlE2xZyTW-l98juTPjQB_WVQTwZ1Nai_DWpRQ2wK5QqHtUu_1f-kPgHsenF8</recordid><startdate>20201030</startdate><enddate>20201030</enddate><creator>Liu, Hanzhe</creator><creator>Vampa, Giulio</creator><creator>Zhang, Jingyuan Linda</creator><creator>Shi, Yu</creator><creator>Buddhiraju, Siddharth</creator><creator>Fan, Shanhui</creator><creator>Vuckovic, Jelena</creator><creator>Bucksbaum, Philip H.</creator><creator>Reis, David A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1576-7533</orcidid><orcidid>https://orcid.org/0000-0002-0081-9732</orcidid><orcidid>https://orcid.org/0000-0002-4603-9686</orcidid><orcidid>https://orcid.org/0000-0002-6481-4703</orcidid><orcidid>https://orcid.org/0000000215767533</orcidid><orcidid>https://orcid.org/0000000246039686</orcidid><orcidid>https://orcid.org/0000000200819732</orcidid><orcidid>https://orcid.org/0000000264814703</orcidid></search><sort><creationdate>20201030</creationdate><title>Beating absorption in solid-state high harmonics</title><author>Liu, Hanzhe ; Vampa, Giulio ; Zhang, Jingyuan Linda ; Shi, Yu ; Buddhiraju, Siddharth ; Fan, Shanhui ; Vuckovic, Jelena ; Bucksbaum, Philip H. ; Reis, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-d5e9ab729c5bc745e0688b3acaa5034662b4d788b09d71d40222e5d9ca1fee443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/400/1103</topic><topic>639/624/400/3923</topic><topic>Absorption</topic><topic>Arrays</topic><topic>Coherence</topic><topic>Harmonics</topic><topic>Infrared lasers</topic><topic>Laser applications</topic><topic>Nonlinear control</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Silicon</topic><topic>Soft x rays</topic><topic>Upconversion</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hanzhe</creatorcontrib><creatorcontrib>Vampa, Giulio</creatorcontrib><creatorcontrib>Zhang, Jingyuan Linda</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Buddhiraju, Siddharth</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Vuckovic, Jelena</creatorcontrib><creatorcontrib>Bucksbaum, Philip H.</creatorcontrib><creatorcontrib>Reis, David A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Communications physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hanzhe</au><au>Vampa, Giulio</au><au>Zhang, Jingyuan Linda</au><au>Shi, Yu</au><au>Buddhiraju, Siddharth</au><au>Fan, Shanhui</au><au>Vuckovic, Jelena</au><au>Bucksbaum, Philip H.</au><au>Reis, David A.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beating absorption in solid-state high harmonics</atitle><jtitle>Communications physics</jtitle><stitle>Commun Phys</stitle><date>2020-10-30</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><artnum>192</artnum><issn>2399-3650</issn><eissn>2399-3650</eissn><abstract>Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electron’s natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by generating high-order harmonics from a periodic array of thin one-dimensional crystalline silicon ridge waveguides. Adding vacuum gaps between the ridges avoids the high absorption loss of the bulk and results in a ~ 100-fold increase of the extraction depth. As the grating period is varied, each high harmonic shows a different and marked modulation, indicating their waveguiding in the vacuum slots with reduced absorption. Looking ahead, our results enable bright on-chip coherent short-wavelength sources and may extend the usable spectral range of traditional nonlinear crystals to their absorption windows. Potential applications include on-chip chemically-sensitive spectro-nanoscopy. Control of nonlinear optical processes at the nanoscale is vital for the generation of on-chip short-wavelength sources, yet strong re-absorption of this radiation limits its efficiency in solids. Here, high harmonics are generated in an array of 1D silicon ridge waveguides, mitigating bulk re-absorption.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42005-020-00472-5</doi><orcidid>https://orcid.org/0000-0002-1576-7533</orcidid><orcidid>https://orcid.org/0000-0002-0081-9732</orcidid><orcidid>https://orcid.org/0000-0002-4603-9686</orcidid><orcidid>https://orcid.org/0000-0002-6481-4703</orcidid><orcidid>https://orcid.org/0000000215767533</orcidid><orcidid>https://orcid.org/0000000246039686</orcidid><orcidid>https://orcid.org/0000000200819732</orcidid><orcidid>https://orcid.org/0000000264814703</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3650
ispartof Communications physics, 2020-10, Vol.3 (1), Article 192
issn 2399-3650
2399-3650
language eng
recordid cdi_osti_scitechconnect_1769609
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects 639/624/400/1103
639/624/400/3923
Absorption
Arrays
Coherence
Harmonics
Infrared lasers
Laser applications
Nonlinear control
Photons
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Silicon
Soft x rays
Upconversion
Waveguides
title Beating absorption in solid-state high harmonics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beating%20absorption%20in%20solid-state%20high%20harmonics&rft.jtitle=Communications%20physics&rft.au=Liu,%20Hanzhe&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-10-30&rft.volume=3&rft.issue=1&rft.artnum=192&rft.issn=2399-3650&rft.eissn=2399-3650&rft_id=info:doi/10.1038/s42005-020-00472-5&rft_dat=%3Cproquest_osti_%3E2471529288%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471529288&rft_id=info:pmid/&rfr_iscdi=true