Probing the Solid Phase of Noble Metal Copper at Terapascal Conditions
Ramp compression along a low-temperature adiabat offers a unique avenue to explore the physical properties of materials at the highest densities of their solid form, a region inaccessible by single shock compression. Using the National Ignition Facility and OMEGA laser facilities, copper samples wer...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-01, Vol.124 (1), p.015701-015701, Article 015701 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 015701 |
---|---|
container_issue | 1 |
container_start_page | 015701 |
container_title | Physical review letters |
container_volume | 124 |
creator | Fratanduono, D E Smith, R F Ali, S J Braun, D G Fernandez-Pañella, A Zhang, S Kraus, R G Coppari, F McNaney, J M Marshall, M C Kirch, L E Swift, D C Millot, M Wicks, J K Eggert, J H |
description | Ramp compression along a low-temperature adiabat offers a unique avenue to explore the physical properties of materials at the highest densities of their solid form, a region inaccessible by single shock compression. Using the National Ignition Facility and OMEGA laser facilities, copper samples were ramp compressed to peak pressures of 2.30 TPa and densities of nearly 30 g/cc, providing fundamental information regarding the compressibility and phase of copper at pressures more than 5 times greater than previously explored. Through x-ray diffraction measurements, we find that the ambient face-centered-cubic structure is preserved up to 1.15 TPa. The ramp compression equation-of-state measurements shows that there are no discontinuities in sound velocities up to 2.30 TPa, suggesting this phase is likely stable up to the peak pressures measured, as predicted by first-principal calculations. The high precision of these quasiabsolute measurements enables us to provide essential benchmarks for advanced computational studies on the behavior of dense monoatomic materials under extreme conditions that constitute a stringent test for solid-state quantum theory. We find that both density-functional theory and the stabilized jellium model, which assumes that the ionic structure can be replaced by an ionic charge distribution by constant positive-charge background, reproduces our data well. Further, our data could serve to establish new international secondary scales of pressure in the terapascal range that is becoming experimentally accessible with advanced static and dynamic compression techniques. |
doi_str_mv | 10.1103/PhysRevLett.124.015701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1769076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339811298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-d8fe0669ccc2048b95f9a886da840fd2bd4fb7b930173cf4d772bf8e1ee8ee563</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EotvCX6gsuHDJMhM7sX1EqxYqLbCCcrYcZ8ymysbB9iL135OyBSFOI42-90ZvHmOXCGtEEG93-_v8hX5uqZQ11nIN2CjAJ2yFoEylEOVTtgIQWBkAdcbOc74DAKxb_ZydCTSqbQ2s2PUuxW6YvvOyJ_41jkPPd3uXicfAP8VuJP6Rihv5Js4zJe4Kv6XkZpf97-XUD2WIU37BngU3Znr5OC_Yt-ur282Havv5_c3m3bbyjRCl6nUgWA5772uQujNNME7rtndaQujrrpehU50RgEr4IHul6i5oQiJN1LTigr06-cZcBpv9UMjvfZwm8sWiWiKpB-jNCZpT_HGkXOxhyJ7G0U0Uj9nWQspaadmoBX39H3oXj2laIiyUMBqxNnqh2hPlU8w5UbBzGg4u3VsE-1CH_acOu9RhT3UswstH-2N3oP6v7M__xS-71YeD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339811298</pqid></control><display><type>article</type><title>Probing the Solid Phase of Noble Metal Copper at Terapascal Conditions</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fratanduono, D E ; Smith, R F ; Ali, S J ; Braun, D G ; Fernandez-Pañella, A ; Zhang, S ; Kraus, R G ; Coppari, F ; McNaney, J M ; Marshall, M C ; Kirch, L E ; Swift, D C ; Millot, M ; Wicks, J K ; Eggert, J H</creator><creatorcontrib>Fratanduono, D E ; Smith, R F ; Ali, S J ; Braun, D G ; Fernandez-Pañella, A ; Zhang, S ; Kraus, R G ; Coppari, F ; McNaney, J M ; Marshall, M C ; Kirch, L E ; Swift, D C ; Millot, M ; Wicks, J K ; Eggert, J H ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Ramp compression along a low-temperature adiabat offers a unique avenue to explore the physical properties of materials at the highest densities of their solid form, a region inaccessible by single shock compression. Using the National Ignition Facility and OMEGA laser facilities, copper samples were ramp compressed to peak pressures of 2.30 TPa and densities of nearly 30 g/cc, providing fundamental information regarding the compressibility and phase of copper at pressures more than 5 times greater than previously explored. Through x-ray diffraction measurements, we find that the ambient face-centered-cubic structure is preserved up to 1.15 TPa. The ramp compression equation-of-state measurements shows that there are no discontinuities in sound velocities up to 2.30 TPa, suggesting this phase is likely stable up to the peak pressures measured, as predicted by first-principal calculations. The high precision of these quasiabsolute measurements enables us to provide essential benchmarks for advanced computational studies on the behavior of dense monoatomic materials under extreme conditions that constitute a stringent test for solid-state quantum theory. We find that both density-functional theory and the stabilized jellium model, which assumes that the ionic structure can be replaced by an ionic charge distribution by constant positive-charge background, reproduces our data well. Further, our data could serve to establish new international secondary scales of pressure in the terapascal range that is becoming experimentally accessible with advanced static and dynamic compression techniques.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.015701</identifier><identifier>PMID: 31976690</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Acoustic velocity ; Charge distribution ; Compressibility ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Copper ; Density functional theory ; Jellium ; Low temperature ; Material properties ; Noble metals ; Physical properties ; Quantum theory ; Solid phases</subject><ispartof>Physical review letters, 2020-01, Vol.124 (1), p.015701-015701, Article 015701</ispartof><rights>Copyright American Physical Society Jan 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-d8fe0669ccc2048b95f9a886da840fd2bd4fb7b930173cf4d772bf8e1ee8ee563</citedby><cites>FETCH-LOGICAL-c533t-d8fe0669ccc2048b95f9a886da840fd2bd4fb7b930173cf4d772bf8e1ee8ee563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31976690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1769076$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fratanduono, D E</creatorcontrib><creatorcontrib>Smith, R F</creatorcontrib><creatorcontrib>Ali, S J</creatorcontrib><creatorcontrib>Braun, D G</creatorcontrib><creatorcontrib>Fernandez-Pañella, A</creatorcontrib><creatorcontrib>Zhang, S</creatorcontrib><creatorcontrib>Kraus, R G</creatorcontrib><creatorcontrib>Coppari, F</creatorcontrib><creatorcontrib>McNaney, J M</creatorcontrib><creatorcontrib>Marshall, M C</creatorcontrib><creatorcontrib>Kirch, L E</creatorcontrib><creatorcontrib>Swift, D C</creatorcontrib><creatorcontrib>Millot, M</creatorcontrib><creatorcontrib>Wicks, J K</creatorcontrib><creatorcontrib>Eggert, J H</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Probing the Solid Phase of Noble Metal Copper at Terapascal Conditions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Ramp compression along a low-temperature adiabat offers a unique avenue to explore the physical properties of materials at the highest densities of their solid form, a region inaccessible by single shock compression. Using the National Ignition Facility and OMEGA laser facilities, copper samples were ramp compressed to peak pressures of 2.30 TPa and densities of nearly 30 g/cc, providing fundamental information regarding the compressibility and phase of copper at pressures more than 5 times greater than previously explored. Through x-ray diffraction measurements, we find that the ambient face-centered-cubic structure is preserved up to 1.15 TPa. The ramp compression equation-of-state measurements shows that there are no discontinuities in sound velocities up to 2.30 TPa, suggesting this phase is likely stable up to the peak pressures measured, as predicted by first-principal calculations. The high precision of these quasiabsolute measurements enables us to provide essential benchmarks for advanced computational studies on the behavior of dense monoatomic materials under extreme conditions that constitute a stringent test for solid-state quantum theory. We find that both density-functional theory and the stabilized jellium model, which assumes that the ionic structure can be replaced by an ionic charge distribution by constant positive-charge background, reproduces our data well. Further, our data could serve to establish new international secondary scales of pressure in the terapascal range that is becoming experimentally accessible with advanced static and dynamic compression techniques.</description><subject>Acoustic velocity</subject><subject>Charge distribution</subject><subject>Compressibility</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Jellium</subject><subject>Low temperature</subject><subject>Material properties</subject><subject>Noble metals</subject><subject>Physical properties</subject><subject>Quantum theory</subject><subject>Solid phases</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EotvCX6gsuHDJMhM7sX1EqxYqLbCCcrYcZ8ymysbB9iL135OyBSFOI42-90ZvHmOXCGtEEG93-_v8hX5uqZQ11nIN2CjAJ2yFoEylEOVTtgIQWBkAdcbOc74DAKxb_ZydCTSqbQ2s2PUuxW6YvvOyJ_41jkPPd3uXicfAP8VuJP6Rihv5Js4zJe4Kv6XkZpf97-XUD2WIU37BngU3Znr5OC_Yt-ur282Havv5_c3m3bbyjRCl6nUgWA5772uQujNNME7rtndaQujrrpehU50RgEr4IHul6i5oQiJN1LTigr06-cZcBpv9UMjvfZwm8sWiWiKpB-jNCZpT_HGkXOxhyJ7G0U0Uj9nWQspaadmoBX39H3oXj2laIiyUMBqxNnqh2hPlU8w5UbBzGg4u3VsE-1CH_acOu9RhT3UswstH-2N3oP6v7M__xS-71YeD</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Fratanduono, D E</creator><creator>Smith, R F</creator><creator>Ali, S J</creator><creator>Braun, D G</creator><creator>Fernandez-Pañella, A</creator><creator>Zhang, S</creator><creator>Kraus, R G</creator><creator>Coppari, F</creator><creator>McNaney, J M</creator><creator>Marshall, M C</creator><creator>Kirch, L E</creator><creator>Swift, D C</creator><creator>Millot, M</creator><creator>Wicks, J K</creator><creator>Eggert, J H</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200108</creationdate><title>Probing the Solid Phase of Noble Metal Copper at Terapascal Conditions</title><author>Fratanduono, D E ; Smith, R F ; Ali, S J ; Braun, D G ; Fernandez-Pañella, A ; Zhang, S ; Kraus, R G ; Coppari, F ; McNaney, J M ; Marshall, M C ; Kirch, L E ; Swift, D C ; Millot, M ; Wicks, J K ; Eggert, J H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-d8fe0669ccc2048b95f9a886da840fd2bd4fb7b930173cf4d772bf8e1ee8ee563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic velocity</topic><topic>Charge distribution</topic><topic>Compressibility</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Jellium</topic><topic>Low temperature</topic><topic>Material properties</topic><topic>Noble metals</topic><topic>Physical properties</topic><topic>Quantum theory</topic><topic>Solid phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fratanduono, D E</creatorcontrib><creatorcontrib>Smith, R F</creatorcontrib><creatorcontrib>Ali, S J</creatorcontrib><creatorcontrib>Braun, D G</creatorcontrib><creatorcontrib>Fernandez-Pañella, A</creatorcontrib><creatorcontrib>Zhang, S</creatorcontrib><creatorcontrib>Kraus, R G</creatorcontrib><creatorcontrib>Coppari, F</creatorcontrib><creatorcontrib>McNaney, J M</creatorcontrib><creatorcontrib>Marshall, M C</creatorcontrib><creatorcontrib>Kirch, L E</creatorcontrib><creatorcontrib>Swift, D C</creatorcontrib><creatorcontrib>Millot, M</creatorcontrib><creatorcontrib>Wicks, J K</creatorcontrib><creatorcontrib>Eggert, J H</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fratanduono, D E</au><au>Smith, R F</au><au>Ali, S J</au><au>Braun, D G</au><au>Fernandez-Pañella, A</au><au>Zhang, S</au><au>Kraus, R G</au><au>Coppari, F</au><au>McNaney, J M</au><au>Marshall, M C</au><au>Kirch, L E</au><au>Swift, D C</au><au>Millot, M</au><au>Wicks, J K</au><au>Eggert, J H</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Solid Phase of Noble Metal Copper at Terapascal Conditions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>124</volume><issue>1</issue><spage>015701</spage><epage>015701</epage><pages>015701-015701</pages><artnum>015701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Ramp compression along a low-temperature adiabat offers a unique avenue to explore the physical properties of materials at the highest densities of their solid form, a region inaccessible by single shock compression. Using the National Ignition Facility and OMEGA laser facilities, copper samples were ramp compressed to peak pressures of 2.30 TPa and densities of nearly 30 g/cc, providing fundamental information regarding the compressibility and phase of copper at pressures more than 5 times greater than previously explored. Through x-ray diffraction measurements, we find that the ambient face-centered-cubic structure is preserved up to 1.15 TPa. The ramp compression equation-of-state measurements shows that there are no discontinuities in sound velocities up to 2.30 TPa, suggesting this phase is likely stable up to the peak pressures measured, as predicted by first-principal calculations. The high precision of these quasiabsolute measurements enables us to provide essential benchmarks for advanced computational studies on the behavior of dense monoatomic materials under extreme conditions that constitute a stringent test for solid-state quantum theory. We find that both density-functional theory and the stabilized jellium model, which assumes that the ionic structure can be replaced by an ionic charge distribution by constant positive-charge background, reproduces our data well. Further, our data could serve to establish new international secondary scales of pressure in the terapascal range that is becoming experimentally accessible with advanced static and dynamic compression techniques.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31976690</pmid><doi>10.1103/PhysRevLett.124.015701</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-01, Vol.124 (1), p.015701-015701, Article 015701 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1769076 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Acoustic velocity Charge distribution Compressibility CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Copper Density functional theory Jellium Low temperature Material properties Noble metals Physical properties Quantum theory Solid phases |
title | Probing the Solid Phase of Noble Metal Copper at Terapascal Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Solid%20Phase%20of%20Noble%20Metal%20Copper%20at%20Terapascal%20Conditions&rft.jtitle=Physical%20review%20letters&rft.au=Fratanduono,%20D%20E&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-01-08&rft.volume=124&rft.issue=1&rft.spage=015701&rft.epage=015701&rft.pages=015701-015701&rft.artnum=015701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.015701&rft_dat=%3Cproquest_osti_%3E2339811298%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339811298&rft_id=info:pmid/31976690&rfr_iscdi=true |