Dual function organic active materials for nonaqueous redox flow batteries

Nonaqueous electrolytes require the inclusion of supporting salts to achieve sufficient conductivity for battery applications. In redox flow batteries (RFBs) wherein solutions contain active species at molar values, the presence of supporting salts can reduce the solubility of organic active materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials advances 2021-03, Vol.2 (4), p.139-141
Hauptverfasser: Attanayake, N. Harsha, Liang, Zhiming, Wang, Yilin, Kaur, Aman Preet, Parkin, Sean R, Mobley, Justin K, Ewoldt, Randy H, Landon, James, Odom, Susan A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 4
container_start_page 139
container_title Materials advances
container_volume 2
creator Attanayake, N. Harsha
Liang, Zhiming
Wang, Yilin
Kaur, Aman Preet
Parkin, Sean R
Mobley, Justin K
Ewoldt, Randy H
Landon, James
Odom, Susan A
description Nonaqueous electrolytes require the inclusion of supporting salts to achieve sufficient conductivity for battery applications. In redox flow batteries (RFBs) wherein solutions contain active species at molar values, the presence of supporting salts can reduce the solubility of organic active materials, limiting battery capacity. Here we sought to design organic materials in which permanently charged substituents keep ionic conductivity high while at the same time increasing the maximum concentration of the charge-storing redox moiety to operate all organic supporting-salt-free full flow cell cycling for the first time. Toward this goal, we synthesized redox-active phenothiazine and viologen derivatives bearing permanent charges. We employed these highly soluble materials as RFB electrolytes without adding supporting salts. Using an anion-selective membrane, a flow cell containing 0.25 M active species cycled stably over 100 cycles (433 h), losing an average of only 0.14% capacity per cycle and 0.75% per day, with post-cycling analysis showing no evidence of decomposition. Further, higher concentration cycling (0.75 M - electron) accessing both reductions of viologen, achieved a cell potential of 1.80 V with 18.3 A h L −1 , high volumetric capacity, only losing an average of 0.90% capacity per day. These results show a new avenue to improve two performance aspects with one molecular modification. X-ray crystal structures of a phenothiazine posolyte and viologen negolyte and cyclic voltammograms of a solution containing both compounds.
doi_str_mv 10.1039/d0ma00881h
format Article
fullrecord <record><control><sourceid>rsc_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1768649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0ma00881h</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8f5f30de56394d7094186eaeb2071614830188b53907c3aed0abc267b0bc0c633</originalsourceid><addsrcrecordid>eNpN0E1LAzEQBuAgCpbai3cheBRWJ5vdbHIsrVql4kXPSzY7sSttoknWj3_v1op6mhl4eGFeQo4ZnDPg6qKFjQaQkq32yCgXnGdlAWr_335IJjE-A0BeMqaUGJHbea_X1PbOpM476sOTdp2hejjfkG50wtDpdaTWB-q80689-j7SgK3_oHbt32mj0xZhPCIHdqA4-Zlj8nh1-TBbZMv765vZdJkZzkTKpC0thxZLwVXRVqAKJgVqbHKomGCF5MCkbEquoDJcYwu6MbmoGmgMmOGTMTnd5fqYujqaLqFZGe8cmlSzSkhRqAGd7ZAJPsaAtn4J3UaHz5pBvW2rnsPd9LutxYBPdjhE8-v-2uRfqQBmIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual function organic active materials for nonaqueous redox flow batteries</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Attanayake, N. Harsha ; Liang, Zhiming ; Wang, Yilin ; Kaur, Aman Preet ; Parkin, Sean R ; Mobley, Justin K ; Ewoldt, Randy H ; Landon, James ; Odom, Susan A</creator><creatorcontrib>Attanayake, N. Harsha ; Liang, Zhiming ; Wang, Yilin ; Kaur, Aman Preet ; Parkin, Sean R ; Mobley, Justin K ; Ewoldt, Randy H ; Landon, James ; Odom, Susan A</creatorcontrib><description>Nonaqueous electrolytes require the inclusion of supporting salts to achieve sufficient conductivity for battery applications. In redox flow batteries (RFBs) wherein solutions contain active species at molar values, the presence of supporting salts can reduce the solubility of organic active materials, limiting battery capacity. Here we sought to design organic materials in which permanently charged substituents keep ionic conductivity high while at the same time increasing the maximum concentration of the charge-storing redox moiety to operate all organic supporting-salt-free full flow cell cycling for the first time. Toward this goal, we synthesized redox-active phenothiazine and viologen derivatives bearing permanent charges. We employed these highly soluble materials as RFB electrolytes without adding supporting salts. Using an anion-selective membrane, a flow cell containing 0.25 M active species cycled stably over 100 cycles (433 h), losing an average of only 0.14% capacity per cycle and 0.75% per day, with post-cycling analysis showing no evidence of decomposition. Further, higher concentration cycling (0.75 M - electron) accessing both reductions of viologen, achieved a cell potential of 1.80 V with 18.3 A h L −1 , high volumetric capacity, only losing an average of 0.90% capacity per day. These results show a new avenue to improve two performance aspects with one molecular modification. X-ray crystal structures of a phenothiazine posolyte and viologen negolyte and cyclic voltammograms of a solution containing both compounds.</description><identifier>ISSN: 2633-5409</identifier><identifier>EISSN: 2633-5409</identifier><identifier>DOI: 10.1039/d0ma00881h</identifier><language>eng</language><publisher>United Kingdom: Royal Society of Chemistry (RSC)</publisher><ispartof>Materials advances, 2021-03, Vol.2 (4), p.139-141</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8f5f30de56394d7094186eaeb2071614830188b53907c3aed0abc267b0bc0c633</citedby><cites>FETCH-LOGICAL-c316t-8f5f30de56394d7094186eaeb2071614830188b53907c3aed0abc267b0bc0c633</cites><orcidid>0000-0001-5777-3918 ; 0000-0002-4264-1661 ; 0000-0002-1741-8847 ; 0000-0001-7617-8137 ; 0000-0003-0394-6398 ; 0000-0001-6185-0605 ; 0000-0003-1610-2995 ; 0000-0001-8113-5166 ; 0000-0001-6708-5852 ; 0000000176178137 ; 0000000242641661 ; 0000000316102995 ; 0000000167085852 ; 0000000161850605 ; 0000000157773918 ; 0000000303946398 ; 0000000181135166 ; 0000000217418847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1768649$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Attanayake, N. Harsha</creatorcontrib><creatorcontrib>Liang, Zhiming</creatorcontrib><creatorcontrib>Wang, Yilin</creatorcontrib><creatorcontrib>Kaur, Aman Preet</creatorcontrib><creatorcontrib>Parkin, Sean R</creatorcontrib><creatorcontrib>Mobley, Justin K</creatorcontrib><creatorcontrib>Ewoldt, Randy H</creatorcontrib><creatorcontrib>Landon, James</creatorcontrib><creatorcontrib>Odom, Susan A</creatorcontrib><title>Dual function organic active materials for nonaqueous redox flow batteries</title><title>Materials advances</title><description>Nonaqueous electrolytes require the inclusion of supporting salts to achieve sufficient conductivity for battery applications. In redox flow batteries (RFBs) wherein solutions contain active species at molar values, the presence of supporting salts can reduce the solubility of organic active materials, limiting battery capacity. Here we sought to design organic materials in which permanently charged substituents keep ionic conductivity high while at the same time increasing the maximum concentration of the charge-storing redox moiety to operate all organic supporting-salt-free full flow cell cycling for the first time. Toward this goal, we synthesized redox-active phenothiazine and viologen derivatives bearing permanent charges. We employed these highly soluble materials as RFB electrolytes without adding supporting salts. Using an anion-selective membrane, a flow cell containing 0.25 M active species cycled stably over 100 cycles (433 h), losing an average of only 0.14% capacity per cycle and 0.75% per day, with post-cycling analysis showing no evidence of decomposition. Further, higher concentration cycling (0.75 M - electron) accessing both reductions of viologen, achieved a cell potential of 1.80 V with 18.3 A h L −1 , high volumetric capacity, only losing an average of 0.90% capacity per day. These results show a new avenue to improve two performance aspects with one molecular modification. X-ray crystal structures of a phenothiazine posolyte and viologen negolyte and cyclic voltammograms of a solution containing both compounds.</description><issn>2633-5409</issn><issn>2633-5409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpN0E1LAzEQBuAgCpbai3cheBRWJ5vdbHIsrVql4kXPSzY7sSttoknWj3_v1op6mhl4eGFeQo4ZnDPg6qKFjQaQkq32yCgXnGdlAWr_335IJjE-A0BeMqaUGJHbea_X1PbOpM476sOTdp2hejjfkG50wtDpdaTWB-q80689-j7SgK3_oHbt32mj0xZhPCIHdqA4-Zlj8nh1-TBbZMv765vZdJkZzkTKpC0thxZLwVXRVqAKJgVqbHKomGCF5MCkbEquoDJcYwu6MbmoGmgMmOGTMTnd5fqYujqaLqFZGe8cmlSzSkhRqAGd7ZAJPsaAtn4J3UaHz5pBvW2rnsPd9LutxYBPdjhE8-v-2uRfqQBmIw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Attanayake, N. Harsha</creator><creator>Liang, Zhiming</creator><creator>Wang, Yilin</creator><creator>Kaur, Aman Preet</creator><creator>Parkin, Sean R</creator><creator>Mobley, Justin K</creator><creator>Ewoldt, Randy H</creator><creator>Landon, James</creator><creator>Odom, Susan A</creator><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5777-3918</orcidid><orcidid>https://orcid.org/0000-0002-4264-1661</orcidid><orcidid>https://orcid.org/0000-0002-1741-8847</orcidid><orcidid>https://orcid.org/0000-0001-7617-8137</orcidid><orcidid>https://orcid.org/0000-0003-0394-6398</orcidid><orcidid>https://orcid.org/0000-0001-6185-0605</orcidid><orcidid>https://orcid.org/0000-0003-1610-2995</orcidid><orcidid>https://orcid.org/0000-0001-8113-5166</orcidid><orcidid>https://orcid.org/0000-0001-6708-5852</orcidid><orcidid>https://orcid.org/0000000176178137</orcidid><orcidid>https://orcid.org/0000000242641661</orcidid><orcidid>https://orcid.org/0000000316102995</orcidid><orcidid>https://orcid.org/0000000167085852</orcidid><orcidid>https://orcid.org/0000000161850605</orcidid><orcidid>https://orcid.org/0000000157773918</orcidid><orcidid>https://orcid.org/0000000303946398</orcidid><orcidid>https://orcid.org/0000000181135166</orcidid><orcidid>https://orcid.org/0000000217418847</orcidid></search><sort><creationdate>20210301</creationdate><title>Dual function organic active materials for nonaqueous redox flow batteries</title><author>Attanayake, N. Harsha ; Liang, Zhiming ; Wang, Yilin ; Kaur, Aman Preet ; Parkin, Sean R ; Mobley, Justin K ; Ewoldt, Randy H ; Landon, James ; Odom, Susan A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8f5f30de56394d7094186eaeb2071614830188b53907c3aed0abc267b0bc0c633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attanayake, N. Harsha</creatorcontrib><creatorcontrib>Liang, Zhiming</creatorcontrib><creatorcontrib>Wang, Yilin</creatorcontrib><creatorcontrib>Kaur, Aman Preet</creatorcontrib><creatorcontrib>Parkin, Sean R</creatorcontrib><creatorcontrib>Mobley, Justin K</creatorcontrib><creatorcontrib>Ewoldt, Randy H</creatorcontrib><creatorcontrib>Landon, James</creatorcontrib><creatorcontrib>Odom, Susan A</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Materials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attanayake, N. Harsha</au><au>Liang, Zhiming</au><au>Wang, Yilin</au><au>Kaur, Aman Preet</au><au>Parkin, Sean R</au><au>Mobley, Justin K</au><au>Ewoldt, Randy H</au><au>Landon, James</au><au>Odom, Susan A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual function organic active materials for nonaqueous redox flow batteries</atitle><jtitle>Materials advances</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>2</volume><issue>4</issue><spage>139</spage><epage>141</epage><pages>139-141</pages><issn>2633-5409</issn><eissn>2633-5409</eissn><abstract>Nonaqueous electrolytes require the inclusion of supporting salts to achieve sufficient conductivity for battery applications. In redox flow batteries (RFBs) wherein solutions contain active species at molar values, the presence of supporting salts can reduce the solubility of organic active materials, limiting battery capacity. Here we sought to design organic materials in which permanently charged substituents keep ionic conductivity high while at the same time increasing the maximum concentration of the charge-storing redox moiety to operate all organic supporting-salt-free full flow cell cycling for the first time. Toward this goal, we synthesized redox-active phenothiazine and viologen derivatives bearing permanent charges. We employed these highly soluble materials as RFB electrolytes without adding supporting salts. Using an anion-selective membrane, a flow cell containing 0.25 M active species cycled stably over 100 cycles (433 h), losing an average of only 0.14% capacity per cycle and 0.75% per day, with post-cycling analysis showing no evidence of decomposition. Further, higher concentration cycling (0.75 M - electron) accessing both reductions of viologen, achieved a cell potential of 1.80 V with 18.3 A h L −1 , high volumetric capacity, only losing an average of 0.90% capacity per day. These results show a new avenue to improve two performance aspects with one molecular modification. X-ray crystal structures of a phenothiazine posolyte and viologen negolyte and cyclic voltammograms of a solution containing both compounds.</abstract><cop>United Kingdom</cop><pub>Royal Society of Chemistry (RSC)</pub><doi>10.1039/d0ma00881h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5777-3918</orcidid><orcidid>https://orcid.org/0000-0002-4264-1661</orcidid><orcidid>https://orcid.org/0000-0002-1741-8847</orcidid><orcidid>https://orcid.org/0000-0001-7617-8137</orcidid><orcidid>https://orcid.org/0000-0003-0394-6398</orcidid><orcidid>https://orcid.org/0000-0001-6185-0605</orcidid><orcidid>https://orcid.org/0000-0003-1610-2995</orcidid><orcidid>https://orcid.org/0000-0001-8113-5166</orcidid><orcidid>https://orcid.org/0000-0001-6708-5852</orcidid><orcidid>https://orcid.org/0000000176178137</orcidid><orcidid>https://orcid.org/0000000242641661</orcidid><orcidid>https://orcid.org/0000000316102995</orcidid><orcidid>https://orcid.org/0000000167085852</orcidid><orcidid>https://orcid.org/0000000161850605</orcidid><orcidid>https://orcid.org/0000000157773918</orcidid><orcidid>https://orcid.org/0000000303946398</orcidid><orcidid>https://orcid.org/0000000181135166</orcidid><orcidid>https://orcid.org/0000000217418847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2633-5409
ispartof Materials advances, 2021-03, Vol.2 (4), p.139-141
issn 2633-5409
2633-5409
language eng
recordid cdi_osti_scitechconnect_1768649
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Dual function organic active materials for nonaqueous redox flow batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20function%20organic%20active%20materials%20for%20nonaqueous%20redox%20flow%20batteries&rft.jtitle=Materials%20advances&rft.au=Attanayake,%20N.%20Harsha&rft.date=2021-03-01&rft.volume=2&rft.issue=4&rft.spage=139&rft.epage=141&rft.pages=139-141&rft.issn=2633-5409&rft.eissn=2633-5409&rft_id=info:doi/10.1039/d0ma00881h&rft_dat=%3Crsc_osti_%3Ed0ma00881h%3C/rsc_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true