A Pyrazine‐Based Polymer for Fast‐Charge Batteries
The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batt...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2019-12, Vol.58 (49), p.17820-17826 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17826 |
---|---|
container_issue | 49 |
container_start_page | 17820 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 58 |
creator | Mao, Minglei Luo, Chao Pollard, Travis P. Hou, Singyuk Gao, Tao Fan, Xiulin Cui, Chunyu Yue, Jinming Tong, Yuxin Yang, Gaojing Deng, Tao Zhang, Ming Ma, Jianmin Suo, Liumin Borodin, Oleg Wang, Chunsheng |
description | The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. |
doi_str_mv | 10.1002/anie.201910916 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1767522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317519941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4776-35223e9bebc6166acff6b150d833208bd1c37df2b5dc5b76642bf465fc3958943</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EoqWwMqII5hSfHdvxWKoWKlXQAWbLdhyaqk2KnQqFiUfgGXkSUrWUkelOuu_-O30IXQLuA8bkVpeF6xMMErAEfoS6wAjEVAh63PYJpbFIGXTQWQiLlk9TzE9RhwITQFnSRXwQzRqvP4rSfX9-3engsmhWLZuV81Fe-WisQ90OhnPtX110p-va-cKFc3SS62VwF_vaQy_j0fPwIZ4-3U-Gg2lsEyF4TBkh1EnjjOXAubZ5zg0wnKWUEpyaDCwVWU4MyywzgvOEmDzhLLdUslQmtIeud7lVqAsVbFE7O7dVWTpbKxBcbA_00M0OWvvqbeNCrRbVxpftX4pQEAykTKCl-jvK-ioE73K19sVK-0YBVluXautSHVy2C1f72I1ZueyA_8prAbkD3oula_6JU4PHyegv_Ae063-l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317519941</pqid></control><display><type>article</type><title>A Pyrazine‐Based Polymer for Fast‐Charge Batteries</title><source>Access via Wiley Online Library</source><creator>Mao, Minglei ; Luo, Chao ; Pollard, Travis P. ; Hou, Singyuk ; Gao, Tao ; Fan, Xiulin ; Cui, Chunyu ; Yue, Jinming ; Tong, Yuxin ; Yang, Gaojing ; Deng, Tao ; Zhang, Ming ; Ma, Jianmin ; Suo, Liumin ; Borodin, Oleg ; Wang, Chunsheng</creator><creatorcontrib>Mao, Minglei ; Luo, Chao ; Pollard, Travis P. ; Hou, Singyuk ; Gao, Tao ; Fan, Xiulin ; Cui, Chunyu ; Yue, Jinming ; Tong, Yuxin ; Yang, Gaojing ; Deng, Tao ; Zhang, Ming ; Ma, Jianmin ; Suo, Liumin ; Borodin, Oleg ; Wang, Chunsheng ; Univ. of Maryland, College Park, MD (United States) ; Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><description>The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201910916</identifier><identifier>PMID: 31571354</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; bio-inspired ; Cathodes ; charge transport ; defects ; Electrode materials ; ENERGY STORAGE ; energy storage (including batteries and capacitors) ; fast charging ; Flux density ; Magnesium ; Metal ions ; Metals ; Photoelectron spectroscopy ; Photoelectrons ; polymer cathodes ; Polymers ; Pyrazine ; rechargeable AI batteries ; rechargeable Al batteries ; Rechargeable batteries ; rechargeable Mg batteries ; Sodium ; sodium ion batteries ; synthesis (novel materials) ; synthesis (scalable processing) ; synthesis (self-assembly)</subject><ispartof>Angewandte Chemie (International ed.), 2019-12, Vol.58 (49), p.17820-17826</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4776-35223e9bebc6166acff6b150d833208bd1c37df2b5dc5b76642bf465fc3958943</citedby><cites>FETCH-LOGICAL-c4776-35223e9bebc6166acff6b150d833208bd1c37df2b5dc5b76642bf465fc3958943</cites><orcidid>0000-0002-8626-6381 ; 0000000286266381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201910916$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201910916$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31571354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1767522$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Minglei</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Pollard, Travis P.</creatorcontrib><creatorcontrib>Hou, Singyuk</creatorcontrib><creatorcontrib>Gao, Tao</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Cui, Chunyu</creatorcontrib><creatorcontrib>Yue, Jinming</creatorcontrib><creatorcontrib>Tong, Yuxin</creatorcontrib><creatorcontrib>Yang, Gaojing</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Ma, Jianmin</creatorcontrib><creatorcontrib>Suo, Liumin</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><title>A Pyrazine‐Based Polymer for Fast‐Charge Batteries</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.</description><subject>Aluminum</subject><subject>bio-inspired</subject><subject>Cathodes</subject><subject>charge transport</subject><subject>defects</subject><subject>Electrode materials</subject><subject>ENERGY STORAGE</subject><subject>energy storage (including batteries and capacitors)</subject><subject>fast charging</subject><subject>Flux density</subject><subject>Magnesium</subject><subject>Metal ions</subject><subject>Metals</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>polymer cathodes</subject><subject>Polymers</subject><subject>Pyrazine</subject><subject>rechargeable AI batteries</subject><subject>rechargeable Al batteries</subject><subject>Rechargeable batteries</subject><subject>rechargeable Mg batteries</subject><subject>Sodium</subject><subject>sodium ion batteries</subject><subject>synthesis (novel materials)</subject><subject>synthesis (scalable processing)</subject><subject>synthesis (self-assembly)</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EoqWwMqII5hSfHdvxWKoWKlXQAWbLdhyaqk2KnQqFiUfgGXkSUrWUkelOuu_-O30IXQLuA8bkVpeF6xMMErAEfoS6wAjEVAh63PYJpbFIGXTQWQiLlk9TzE9RhwITQFnSRXwQzRqvP4rSfX9-3engsmhWLZuV81Fe-WisQ90OhnPtX110p-va-cKFc3SS62VwF_vaQy_j0fPwIZ4-3U-Gg2lsEyF4TBkh1EnjjOXAubZ5zg0wnKWUEpyaDCwVWU4MyywzgvOEmDzhLLdUslQmtIeud7lVqAsVbFE7O7dVWTpbKxBcbA_00M0OWvvqbeNCrRbVxpftX4pQEAykTKCl-jvK-ioE73K19sVK-0YBVluXautSHVy2C1f72I1ZueyA_8prAbkD3oula_6JU4PHyegv_Ae063-l</recordid><startdate>20191202</startdate><enddate>20191202</enddate><creator>Mao, Minglei</creator><creator>Luo, Chao</creator><creator>Pollard, Travis P.</creator><creator>Hou, Singyuk</creator><creator>Gao, Tao</creator><creator>Fan, Xiulin</creator><creator>Cui, Chunyu</creator><creator>Yue, Jinming</creator><creator>Tong, Yuxin</creator><creator>Yang, Gaojing</creator><creator>Deng, Tao</creator><creator>Zhang, Ming</creator><creator>Ma, Jianmin</creator><creator>Suo, Liumin</creator><creator>Borodin, Oleg</creator><creator>Wang, Chunsheng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid></search><sort><creationdate>20191202</creationdate><title>A Pyrazine‐Based Polymer for Fast‐Charge Batteries</title><author>Mao, Minglei ; Luo, Chao ; Pollard, Travis P. ; Hou, Singyuk ; Gao, Tao ; Fan, Xiulin ; Cui, Chunyu ; Yue, Jinming ; Tong, Yuxin ; Yang, Gaojing ; Deng, Tao ; Zhang, Ming ; Ma, Jianmin ; Suo, Liumin ; Borodin, Oleg ; Wang, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4776-35223e9bebc6166acff6b150d833208bd1c37df2b5dc5b76642bf465fc3958943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>bio-inspired</topic><topic>Cathodes</topic><topic>charge transport</topic><topic>defects</topic><topic>Electrode materials</topic><topic>ENERGY STORAGE</topic><topic>energy storage (including batteries and capacitors)</topic><topic>fast charging</topic><topic>Flux density</topic><topic>Magnesium</topic><topic>Metal ions</topic><topic>Metals</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>polymer cathodes</topic><topic>Polymers</topic><topic>Pyrazine</topic><topic>rechargeable AI batteries</topic><topic>rechargeable Al batteries</topic><topic>Rechargeable batteries</topic><topic>rechargeable Mg batteries</topic><topic>Sodium</topic><topic>sodium ion batteries</topic><topic>synthesis (novel materials)</topic><topic>synthesis (scalable processing)</topic><topic>synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Minglei</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Pollard, Travis P.</creatorcontrib><creatorcontrib>Hou, Singyuk</creatorcontrib><creatorcontrib>Gao, Tao</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Cui, Chunyu</creatorcontrib><creatorcontrib>Yue, Jinming</creatorcontrib><creatorcontrib>Tong, Yuxin</creatorcontrib><creatorcontrib>Yang, Gaojing</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Ma, Jianmin</creatorcontrib><creatorcontrib>Suo, Liumin</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Minglei</au><au>Luo, Chao</au><au>Pollard, Travis P.</au><au>Hou, Singyuk</au><au>Gao, Tao</au><au>Fan, Xiulin</au><au>Cui, Chunyu</au><au>Yue, Jinming</au><au>Tong, Yuxin</au><au>Yang, Gaojing</au><au>Deng, Tao</au><au>Zhang, Ming</au><au>Ma, Jianmin</au><au>Suo, Liumin</au><au>Borodin, Oleg</au><au>Wang, Chunsheng</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pyrazine‐Based Polymer for Fast‐Charge Batteries</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-12-02</date><risdate>2019</risdate><volume>58</volume><issue>49</issue><spage>17820</spage><epage>17826</epage><pages>17820-17826</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31571354</pmid><doi>10.1002/anie.201910916</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2019-12, Vol.58 (49), p.17820-17826 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1767522 |
source | Access via Wiley Online Library |
subjects | Aluminum bio-inspired Cathodes charge transport defects Electrode materials ENERGY STORAGE energy storage (including batteries and capacitors) fast charging Flux density Magnesium Metal ions Metals Photoelectron spectroscopy Photoelectrons polymer cathodes Polymers Pyrazine rechargeable AI batteries rechargeable Al batteries Rechargeable batteries rechargeable Mg batteries Sodium sodium ion batteries synthesis (novel materials) synthesis (scalable processing) synthesis (self-assembly) |
title | A Pyrazine‐Based Polymer for Fast‐Charge Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pyrazine%E2%80%90Based%20Polymer%20for%20Fast%E2%80%90Charge%20Batteries&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Mao,%20Minglei&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2019-12-02&rft.volume=58&rft.issue=49&rft.spage=17820&rft.epage=17826&rft.pages=17820-17826&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201910916&rft_dat=%3Cproquest_osti_%3E2317519941%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317519941&rft_id=info:pmid/31571354&rfr_iscdi=true |