A Pyrazine‐Based Polymer for Fast‐Charge Batteries

The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2019-12, Vol.58 (49), p.17820-17826
Hauptverfasser: Mao, Minglei, Luo, Chao, Pollard, Travis P., Hou, Singyuk, Gao, Tao, Fan, Xiulin, Cui, Chunyu, Yue, Jinming, Tong, Yuxin, Yang, Gaojing, Deng, Tao, Zhang, Ming, Ma, Jianmin, Suo, Liumin, Borodin, Oleg, Wang, Chunsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17826
container_issue 49
container_start_page 17820
container_title Angewandte Chemie (International ed.)
container_volume 58
creator Mao, Minglei
Luo, Chao
Pollard, Travis P.
Hou, Singyuk
Gao, Tao
Fan, Xiulin
Cui, Chunyu
Yue, Jinming
Tong, Yuxin
Yang, Gaojing
Deng, Tao
Zhang, Ming
Ma, Jianmin
Suo, Liumin
Borodin, Oleg
Wang, Chunsheng
description The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
doi_str_mv 10.1002/anie.201910916
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1767522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317519941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4776-35223e9bebc6166acff6b150d833208bd1c37df2b5dc5b76642bf465fc3958943</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EoqWwMqII5hSfHdvxWKoWKlXQAWbLdhyaqk2KnQqFiUfgGXkSUrWUkelOuu_-O30IXQLuA8bkVpeF6xMMErAEfoS6wAjEVAh63PYJpbFIGXTQWQiLlk9TzE9RhwITQFnSRXwQzRqvP4rSfX9-3engsmhWLZuV81Fe-WisQ90OhnPtX110p-va-cKFc3SS62VwF_vaQy_j0fPwIZ4-3U-Gg2lsEyF4TBkh1EnjjOXAubZ5zg0wnKWUEpyaDCwVWU4MyywzgvOEmDzhLLdUslQmtIeud7lVqAsVbFE7O7dVWTpbKxBcbA_00M0OWvvqbeNCrRbVxpftX4pQEAykTKCl-jvK-ioE73K19sVK-0YBVluXautSHVy2C1f72I1ZueyA_8prAbkD3oula_6JU4PHyegv_Ae063-l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317519941</pqid></control><display><type>article</type><title>A Pyrazine‐Based Polymer for Fast‐Charge Batteries</title><source>Access via Wiley Online Library</source><creator>Mao, Minglei ; Luo, Chao ; Pollard, Travis P. ; Hou, Singyuk ; Gao, Tao ; Fan, Xiulin ; Cui, Chunyu ; Yue, Jinming ; Tong, Yuxin ; Yang, Gaojing ; Deng, Tao ; Zhang, Ming ; Ma, Jianmin ; Suo, Liumin ; Borodin, Oleg ; Wang, Chunsheng</creator><creatorcontrib>Mao, Minglei ; Luo, Chao ; Pollard, Travis P. ; Hou, Singyuk ; Gao, Tao ; Fan, Xiulin ; Cui, Chunyu ; Yue, Jinming ; Tong, Yuxin ; Yang, Gaojing ; Deng, Tao ; Zhang, Ming ; Ma, Jianmin ; Suo, Liumin ; Borodin, Oleg ; Wang, Chunsheng ; Univ. of Maryland, College Park, MD (United States) ; Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><description>The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201910916</identifier><identifier>PMID: 31571354</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; bio-inspired ; Cathodes ; charge transport ; defects ; Electrode materials ; ENERGY STORAGE ; energy storage (including batteries and capacitors) ; fast charging ; Flux density ; Magnesium ; Metal ions ; Metals ; Photoelectron spectroscopy ; Photoelectrons ; polymer cathodes ; Polymers ; Pyrazine ; rechargeable AI batteries ; rechargeable Al batteries ; Rechargeable batteries ; rechargeable Mg batteries ; Sodium ; sodium ion batteries ; synthesis (novel materials) ; synthesis (scalable processing) ; synthesis (self-assembly)</subject><ispartof>Angewandte Chemie (International ed.), 2019-12, Vol.58 (49), p.17820-17826</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4776-35223e9bebc6166acff6b150d833208bd1c37df2b5dc5b76642bf465fc3958943</citedby><cites>FETCH-LOGICAL-c4776-35223e9bebc6166acff6b150d833208bd1c37df2b5dc5b76642bf465fc3958943</cites><orcidid>0000-0002-8626-6381 ; 0000000286266381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201910916$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201910916$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31571354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1767522$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Minglei</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Pollard, Travis P.</creatorcontrib><creatorcontrib>Hou, Singyuk</creatorcontrib><creatorcontrib>Gao, Tao</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Cui, Chunyu</creatorcontrib><creatorcontrib>Yue, Jinming</creatorcontrib><creatorcontrib>Tong, Yuxin</creatorcontrib><creatorcontrib>Yang, Gaojing</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Ma, Jianmin</creatorcontrib><creatorcontrib>Suo, Liumin</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><title>A Pyrazine‐Based Polymer for Fast‐Charge Batteries</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.</description><subject>Aluminum</subject><subject>bio-inspired</subject><subject>Cathodes</subject><subject>charge transport</subject><subject>defects</subject><subject>Electrode materials</subject><subject>ENERGY STORAGE</subject><subject>energy storage (including batteries and capacitors)</subject><subject>fast charging</subject><subject>Flux density</subject><subject>Magnesium</subject><subject>Metal ions</subject><subject>Metals</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>polymer cathodes</subject><subject>Polymers</subject><subject>Pyrazine</subject><subject>rechargeable AI batteries</subject><subject>rechargeable Al batteries</subject><subject>Rechargeable batteries</subject><subject>rechargeable Mg batteries</subject><subject>Sodium</subject><subject>sodium ion batteries</subject><subject>synthesis (novel materials)</subject><subject>synthesis (scalable processing)</subject><subject>synthesis (self-assembly)</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EoqWwMqII5hSfHdvxWKoWKlXQAWbLdhyaqk2KnQqFiUfgGXkSUrWUkelOuu_-O30IXQLuA8bkVpeF6xMMErAEfoS6wAjEVAh63PYJpbFIGXTQWQiLlk9TzE9RhwITQFnSRXwQzRqvP4rSfX9-3engsmhWLZuV81Fe-WisQ90OhnPtX110p-va-cKFc3SS62VwF_vaQy_j0fPwIZ4-3U-Gg2lsEyF4TBkh1EnjjOXAubZ5zg0wnKWUEpyaDCwVWU4MyywzgvOEmDzhLLdUslQmtIeud7lVqAsVbFE7O7dVWTpbKxBcbA_00M0OWvvqbeNCrRbVxpftX4pQEAykTKCl-jvK-ioE73K19sVK-0YBVluXautSHVy2C1f72I1ZueyA_8prAbkD3oula_6JU4PHyegv_Ae063-l</recordid><startdate>20191202</startdate><enddate>20191202</enddate><creator>Mao, Minglei</creator><creator>Luo, Chao</creator><creator>Pollard, Travis P.</creator><creator>Hou, Singyuk</creator><creator>Gao, Tao</creator><creator>Fan, Xiulin</creator><creator>Cui, Chunyu</creator><creator>Yue, Jinming</creator><creator>Tong, Yuxin</creator><creator>Yang, Gaojing</creator><creator>Deng, Tao</creator><creator>Zhang, Ming</creator><creator>Ma, Jianmin</creator><creator>Suo, Liumin</creator><creator>Borodin, Oleg</creator><creator>Wang, Chunsheng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid></search><sort><creationdate>20191202</creationdate><title>A Pyrazine‐Based Polymer for Fast‐Charge Batteries</title><author>Mao, Minglei ; Luo, Chao ; Pollard, Travis P. ; Hou, Singyuk ; Gao, Tao ; Fan, Xiulin ; Cui, Chunyu ; Yue, Jinming ; Tong, Yuxin ; Yang, Gaojing ; Deng, Tao ; Zhang, Ming ; Ma, Jianmin ; Suo, Liumin ; Borodin, Oleg ; Wang, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4776-35223e9bebc6166acff6b150d833208bd1c37df2b5dc5b76642bf465fc3958943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>bio-inspired</topic><topic>Cathodes</topic><topic>charge transport</topic><topic>defects</topic><topic>Electrode materials</topic><topic>ENERGY STORAGE</topic><topic>energy storage (including batteries and capacitors)</topic><topic>fast charging</topic><topic>Flux density</topic><topic>Magnesium</topic><topic>Metal ions</topic><topic>Metals</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>polymer cathodes</topic><topic>Polymers</topic><topic>Pyrazine</topic><topic>rechargeable AI batteries</topic><topic>rechargeable Al batteries</topic><topic>Rechargeable batteries</topic><topic>rechargeable Mg batteries</topic><topic>Sodium</topic><topic>sodium ion batteries</topic><topic>synthesis (novel materials)</topic><topic>synthesis (scalable processing)</topic><topic>synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Minglei</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Pollard, Travis P.</creatorcontrib><creatorcontrib>Hou, Singyuk</creatorcontrib><creatorcontrib>Gao, Tao</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Cui, Chunyu</creatorcontrib><creatorcontrib>Yue, Jinming</creatorcontrib><creatorcontrib>Tong, Yuxin</creatorcontrib><creatorcontrib>Yang, Gaojing</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Ma, Jianmin</creatorcontrib><creatorcontrib>Suo, Liumin</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Minglei</au><au>Luo, Chao</au><au>Pollard, Travis P.</au><au>Hou, Singyuk</au><au>Gao, Tao</au><au>Fan, Xiulin</au><au>Cui, Chunyu</au><au>Yue, Jinming</au><au>Tong, Yuxin</au><au>Yang, Gaojing</au><au>Deng, Tao</au><au>Zhang, Ming</au><au>Ma, Jianmin</au><au>Suo, Liumin</au><au>Borodin, Oleg</au><au>Wang, Chunsheng</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pyrazine‐Based Polymer for Fast‐Charge Batteries</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-12-02</date><risdate>2019</risdate><volume>58</volume><issue>49</issue><spage>17820</spage><epage>17826</epage><pages>17820-17826</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31571354</pmid><doi>10.1002/anie.201910916</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2019-12, Vol.58 (49), p.17820-17826
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1767522
source Access via Wiley Online Library
subjects Aluminum
bio-inspired
Cathodes
charge transport
defects
Electrode materials
ENERGY STORAGE
energy storage (including batteries and capacitors)
fast charging
Flux density
Magnesium
Metal ions
Metals
Photoelectron spectroscopy
Photoelectrons
polymer cathodes
Polymers
Pyrazine
rechargeable AI batteries
rechargeable Al batteries
Rechargeable batteries
rechargeable Mg batteries
Sodium
sodium ion batteries
synthesis (novel materials)
synthesis (scalable processing)
synthesis (self-assembly)
title A Pyrazine‐Based Polymer for Fast‐Charge Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pyrazine%E2%80%90Based%20Polymer%20for%20Fast%E2%80%90Charge%20Batteries&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Mao,%20Minglei&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2019-12-02&rft.volume=58&rft.issue=49&rft.spage=17820&rft.epage=17826&rft.pages=17820-17826&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201910916&rft_dat=%3Cproquest_osti_%3E2317519941%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317519941&rft_id=info:pmid/31571354&rfr_iscdi=true