An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem
We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2021-10, Vol.99, p.162-170 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | |
container_start_page | 162 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 99 |
creator | Benedusi, Pietro Minion, Michael L. Krause, Rolf |
description | We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the continuous time dependent problem. Then, a collocation form for PFASST and a discontinuous Galerkin discretization in time for the space-time multigrid are employed, resulting in the same discrete solution at the time nodes. Strong and weak scaling of both multilevel strategies are compared for varying orders of the temporal discretization. Moreover, we investigate the respective convergence behavior for non-linear problems and highlight quantitative differences in execution times. For the linear problem, we observe that the two methods show similar scaling behavior with PFASST being more favorable for high order methods or when few parallel resources are available. For the non-linear problem, PFASST is more flexible in terms of solution strategy, while space-time multigrid requires a full non-linear solve. |
doi_str_mv | 10.1016/j.camwa.2021.07.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1766472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122121002716</els_id><sourcerecordid>2583114107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ddc7a23c7bdfff945edc588c500e2c3e6d139102f36eb0fb0841af6132c0d9433</originalsourceid><addsrcrecordid>eNp9kMFuGyEQhlGVSnXSPkEvqDnvZoD1Lj70YEVNGylSIiU9IzwMNZZ32QJO2rcvjnvOiZH4_tE_H2OfBbQCRH-1a9GOL7aVIEULQwug37GF0INqhr7XZ2wBeqUbIaX4wM5z3gFApyQs2HY9cfozUwojTcXuOcZxtinkOPHoueV5tkhNqd98POxL-JWC4yOVbXT8JZQtf7hZPz4-cR9TpRNZLCFOjQveH3Kd-JziZk_jR_be232mT__fC_bz5tvT9Y_m7v777fX6rsEOVGmcw8FKhcPGee9X3ZIcLrXGJQBJVNQ7oVYCpFc9bcBvQHfC-l4oieBWnVIX7Mtpb8wlmIyhEG4xThNhMaLa6AZZocsTVMv9PlAuZhcPaaq9jFxqJUQnYKiUOlGYYs6JvJmrJpv-GgHm6N3szKt3c_RuYDDVe019PaWoXvkcKB1L0ITkQjp2cDG8mf8Hi2qM_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583114107</pqid></control><display><type>article</type><title>An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem</title><source>Elsevier ScienceDirect Journals</source><creator>Benedusi, Pietro ; Minion, Michael L. ; Krause, Rolf</creator><creatorcontrib>Benedusi, Pietro ; Minion, Michael L. ; Krause, Rolf ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the continuous time dependent problem. Then, a collocation form for PFASST and a discontinuous Galerkin discretization in time for the space-time multigrid are employed, resulting in the same discrete solution at the time nodes. Strong and weak scaling of both multilevel strategies are compared for varying orders of the temporal discretization. Moreover, we investigate the respective convergence behavior for non-linear problems and highlight quantitative differences in execution times. For the linear problem, we observe that the two methods show similar scaling behavior with PFASST being more favorable for high order methods or when few parallel resources are available. For the non-linear problem, PFASST is more flexible in terms of solution strategy, while space-time multigrid requires a full non-linear solve.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2021.07.008</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>DG discretization ; Discretization ; MATHEMATICS AND COMPUTING ; Parallel-in-time ; PFASST ; Reaction-diffusion equation ; Space-time multigrid ; Spacetime ; Strong and weak scalability ; Time dependence</subject><ispartof>Computers & mathematics with applications (1987), 2021-10, Vol.99, p.162-170</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier BV Oct 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ddc7a23c7bdfff945edc588c500e2c3e6d139102f36eb0fb0841af6132c0d9433</citedby><cites>FETCH-LOGICAL-c403t-ddc7a23c7bdfff945edc588c500e2c3e6d139102f36eb0fb0841af6132c0d9433</cites><orcidid>0000-0001-7799-5999 ; 0000-0002-0044-9778 ; 0000000177995999 ; 0000000200449778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122121002716$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1766472$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Benedusi, Pietro</creatorcontrib><creatorcontrib>Minion, Michael L.</creatorcontrib><creatorcontrib>Krause, Rolf</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem</title><title>Computers & mathematics with applications (1987)</title><description>We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the continuous time dependent problem. Then, a collocation form for PFASST and a discontinuous Galerkin discretization in time for the space-time multigrid are employed, resulting in the same discrete solution at the time nodes. Strong and weak scaling of both multilevel strategies are compared for varying orders of the temporal discretization. Moreover, we investigate the respective convergence behavior for non-linear problems and highlight quantitative differences in execution times. For the linear problem, we observe that the two methods show similar scaling behavior with PFASST being more favorable for high order methods or when few parallel resources are available. For the non-linear problem, PFASST is more flexible in terms of solution strategy, while space-time multigrid requires a full non-linear solve.</description><subject>DG discretization</subject><subject>Discretization</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Parallel-in-time</subject><subject>PFASST</subject><subject>Reaction-diffusion equation</subject><subject>Space-time multigrid</subject><subject>Spacetime</subject><subject>Strong and weak scalability</subject><subject>Time dependence</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuGyEQhlGVSnXSPkEvqDnvZoD1Lj70YEVNGylSIiU9IzwMNZZ32QJO2rcvjnvOiZH4_tE_H2OfBbQCRH-1a9GOL7aVIEULQwug37GF0INqhr7XZ2wBeqUbIaX4wM5z3gFApyQs2HY9cfozUwojTcXuOcZxtinkOPHoueV5tkhNqd98POxL-JWC4yOVbXT8JZQtf7hZPz4-cR9TpRNZLCFOjQveH3Kd-JziZk_jR_be232mT__fC_bz5tvT9Y_m7v777fX6rsEOVGmcw8FKhcPGee9X3ZIcLrXGJQBJVNQ7oVYCpFc9bcBvQHfC-l4oieBWnVIX7Mtpb8wlmIyhEG4xThNhMaLa6AZZocsTVMv9PlAuZhcPaaq9jFxqJUQnYKiUOlGYYs6JvJmrJpv-GgHm6N3szKt3c_RuYDDVe019PaWoXvkcKB1L0ITkQjp2cDG8mf8Hi2qM_A</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Benedusi, Pietro</creator><creator>Minion, Michael L.</creator><creator>Krause, Rolf</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7799-5999</orcidid><orcidid>https://orcid.org/0000-0002-0044-9778</orcidid><orcidid>https://orcid.org/0000000177995999</orcidid><orcidid>https://orcid.org/0000000200449778</orcidid></search><sort><creationdate>20211001</creationdate><title>An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem</title><author>Benedusi, Pietro ; Minion, Michael L. ; Krause, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ddc7a23c7bdfff945edc588c500e2c3e6d139102f36eb0fb0841af6132c0d9433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DG discretization</topic><topic>Discretization</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Parallel-in-time</topic><topic>PFASST</topic><topic>Reaction-diffusion equation</topic><topic>Space-time multigrid</topic><topic>Spacetime</topic><topic>Strong and weak scalability</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedusi, Pietro</creatorcontrib><creatorcontrib>Minion, Michael L.</creatorcontrib><creatorcontrib>Krause, Rolf</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedusi, Pietro</au><au>Minion, Michael L.</au><au>Krause, Rolf</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>99</volume><spage>162</spage><epage>170</epage><pages>162-170</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the continuous time dependent problem. Then, a collocation form for PFASST and a discontinuous Galerkin discretization in time for the space-time multigrid are employed, resulting in the same discrete solution at the time nodes. Strong and weak scaling of both multilevel strategies are compared for varying orders of the temporal discretization. Moreover, we investigate the respective convergence behavior for non-linear problems and highlight quantitative differences in execution times. For the linear problem, we observe that the two methods show similar scaling behavior with PFASST being more favorable for high order methods or when few parallel resources are available. For the non-linear problem, PFASST is more flexible in terms of solution strategy, while space-time multigrid requires a full non-linear solve.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2021.07.008</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7799-5999</orcidid><orcidid>https://orcid.org/0000-0002-0044-9778</orcidid><orcidid>https://orcid.org/0000000177995999</orcidid><orcidid>https://orcid.org/0000000200449778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2021-10, Vol.99, p.162-170 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_osti_scitechconnect_1766472 |
source | Elsevier ScienceDirect Journals |
subjects | DG discretization Discretization MATHEMATICS AND COMPUTING Parallel-in-time PFASST Reaction-diffusion equation Space-time multigrid Spacetime Strong and weak scalability Time dependence |
title | An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20comparison%20of%20a%20space-time%20multigrid%20method%20with%20PFASST%20for%20a%20reaction-diffusion%20problem&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Benedusi,%20Pietro&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-10-01&rft.volume=99&rft.spage=162&rft.epage=170&rft.pages=162-170&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2021.07.008&rft_dat=%3Cproquest_osti_%3E2583114107%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583114107&rft_id=info:pmid/&rft_els_id=S0898122121002716&rfr_iscdi=true |