An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem

We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2021-10, Vol.99, p.162-170
Hauptverfasser: Benedusi, Pietro, Minion, Michael L., Krause, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue
container_start_page 162
container_title Computers & mathematics with applications (1987)
container_volume 99
creator Benedusi, Pietro
Minion, Michael L.
Krause, Rolf
description We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the continuous time dependent problem. Then, a collocation form for PFASST and a discontinuous Galerkin discretization in time for the space-time multigrid are employed, resulting in the same discrete solution at the time nodes. Strong and weak scaling of both multilevel strategies are compared for varying orders of the temporal discretization. Moreover, we investigate the respective convergence behavior for non-linear problems and highlight quantitative differences in execution times. For the linear problem, we observe that the two methods show similar scaling behavior with PFASST being more favorable for high order methods or when few parallel resources are available. For the non-linear problem, PFASST is more flexible in terms of solution strategy, while space-time multigrid requires a full non-linear solve.
doi_str_mv 10.1016/j.camwa.2021.07.008
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1766472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122121002716</els_id><sourcerecordid>2583114107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ddc7a23c7bdfff945edc588c500e2c3e6d139102f36eb0fb0841af6132c0d9433</originalsourceid><addsrcrecordid>eNp9kMFuGyEQhlGVSnXSPkEvqDnvZoD1Lj70YEVNGylSIiU9IzwMNZZ32QJO2rcvjnvOiZH4_tE_H2OfBbQCRH-1a9GOL7aVIEULQwug37GF0INqhr7XZ2wBeqUbIaX4wM5z3gFApyQs2HY9cfozUwojTcXuOcZxtinkOPHoueV5tkhNqd98POxL-JWC4yOVbXT8JZQtf7hZPz4-cR9TpRNZLCFOjQveH3Kd-JziZk_jR_be232mT__fC_bz5tvT9Y_m7v777fX6rsEOVGmcw8FKhcPGee9X3ZIcLrXGJQBJVNQ7oVYCpFc9bcBvQHfC-l4oieBWnVIX7Mtpb8wlmIyhEG4xThNhMaLa6AZZocsTVMv9PlAuZhcPaaq9jFxqJUQnYKiUOlGYYs6JvJmrJpv-GgHm6N3szKt3c_RuYDDVe019PaWoXvkcKB1L0ITkQjp2cDG8mf8Hi2qM_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583114107</pqid></control><display><type>article</type><title>An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem</title><source>Elsevier ScienceDirect Journals</source><creator>Benedusi, Pietro ; Minion, Michael L. ; Krause, Rolf</creator><creatorcontrib>Benedusi, Pietro ; Minion, Michael L. ; Krause, Rolf ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the continuous time dependent problem. Then, a collocation form for PFASST and a discontinuous Galerkin discretization in time for the space-time multigrid are employed, resulting in the same discrete solution at the time nodes. Strong and weak scaling of both multilevel strategies are compared for varying orders of the temporal discretization. Moreover, we investigate the respective convergence behavior for non-linear problems and highlight quantitative differences in execution times. For the linear problem, we observe that the two methods show similar scaling behavior with PFASST being more favorable for high order methods or when few parallel resources are available. For the non-linear problem, PFASST is more flexible in terms of solution strategy, while space-time multigrid requires a full non-linear solve.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2021.07.008</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>DG discretization ; Discretization ; MATHEMATICS AND COMPUTING ; Parallel-in-time ; PFASST ; Reaction-diffusion equation ; Space-time multigrid ; Spacetime ; Strong and weak scalability ; Time dependence</subject><ispartof>Computers &amp; mathematics with applications (1987), 2021-10, Vol.99, p.162-170</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier BV Oct 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ddc7a23c7bdfff945edc588c500e2c3e6d139102f36eb0fb0841af6132c0d9433</citedby><cites>FETCH-LOGICAL-c403t-ddc7a23c7bdfff945edc588c500e2c3e6d139102f36eb0fb0841af6132c0d9433</cites><orcidid>0000-0001-7799-5999 ; 0000-0002-0044-9778 ; 0000000177995999 ; 0000000200449778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122121002716$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1766472$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Benedusi, Pietro</creatorcontrib><creatorcontrib>Minion, Michael L.</creatorcontrib><creatorcontrib>Krause, Rolf</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem</title><title>Computers &amp; mathematics with applications (1987)</title><description>We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the continuous time dependent problem. Then, a collocation form for PFASST and a discontinuous Galerkin discretization in time for the space-time multigrid are employed, resulting in the same discrete solution at the time nodes. Strong and weak scaling of both multilevel strategies are compared for varying orders of the temporal discretization. Moreover, we investigate the respective convergence behavior for non-linear problems and highlight quantitative differences in execution times. For the linear problem, we observe that the two methods show similar scaling behavior with PFASST being more favorable for high order methods or when few parallel resources are available. For the non-linear problem, PFASST is more flexible in terms of solution strategy, while space-time multigrid requires a full non-linear solve.</description><subject>DG discretization</subject><subject>Discretization</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Parallel-in-time</subject><subject>PFASST</subject><subject>Reaction-diffusion equation</subject><subject>Space-time multigrid</subject><subject>Spacetime</subject><subject>Strong and weak scalability</subject><subject>Time dependence</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuGyEQhlGVSnXSPkEvqDnvZoD1Lj70YEVNGylSIiU9IzwMNZZ32QJO2rcvjnvOiZH4_tE_H2OfBbQCRH-1a9GOL7aVIEULQwug37GF0INqhr7XZ2wBeqUbIaX4wM5z3gFApyQs2HY9cfozUwojTcXuOcZxtinkOPHoueV5tkhNqd98POxL-JWC4yOVbXT8JZQtf7hZPz4-cR9TpRNZLCFOjQveH3Kd-JziZk_jR_be232mT__fC_bz5tvT9Y_m7v777fX6rsEOVGmcw8FKhcPGee9X3ZIcLrXGJQBJVNQ7oVYCpFc9bcBvQHfC-l4oieBWnVIX7Mtpb8wlmIyhEG4xThNhMaLa6AZZocsTVMv9PlAuZhcPaaq9jFxqJUQnYKiUOlGYYs6JvJmrJpv-GgHm6N3szKt3c_RuYDDVe019PaWoXvkcKB1L0ITkQjp2cDG8mf8Hi2qM_A</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Benedusi, Pietro</creator><creator>Minion, Michael L.</creator><creator>Krause, Rolf</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7799-5999</orcidid><orcidid>https://orcid.org/0000-0002-0044-9778</orcidid><orcidid>https://orcid.org/0000000177995999</orcidid><orcidid>https://orcid.org/0000000200449778</orcidid></search><sort><creationdate>20211001</creationdate><title>An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem</title><author>Benedusi, Pietro ; Minion, Michael L. ; Krause, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ddc7a23c7bdfff945edc588c500e2c3e6d139102f36eb0fb0841af6132c0d9433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DG discretization</topic><topic>Discretization</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Parallel-in-time</topic><topic>PFASST</topic><topic>Reaction-diffusion equation</topic><topic>Space-time multigrid</topic><topic>Spacetime</topic><topic>Strong and weak scalability</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedusi, Pietro</creatorcontrib><creatorcontrib>Minion, Michael L.</creatorcontrib><creatorcontrib>Krause, Rolf</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedusi, Pietro</au><au>Minion, Michael L.</au><au>Krause, Rolf</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>99</volume><spage>162</spage><epage>170</epage><pages>162-170</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multigrid strategies. For both approaches, we start from an integral formulation of the continuous time dependent problem. Then, a collocation form for PFASST and a discontinuous Galerkin discretization in time for the space-time multigrid are employed, resulting in the same discrete solution at the time nodes. Strong and weak scaling of both multilevel strategies are compared for varying orders of the temporal discretization. Moreover, we investigate the respective convergence behavior for non-linear problems and highlight quantitative differences in execution times. For the linear problem, we observe that the two methods show similar scaling behavior with PFASST being more favorable for high order methods or when few parallel resources are available. For the non-linear problem, PFASST is more flexible in terms of solution strategy, while space-time multigrid requires a full non-linear solve.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2021.07.008</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7799-5999</orcidid><orcidid>https://orcid.org/0000-0002-0044-9778</orcidid><orcidid>https://orcid.org/0000000177995999</orcidid><orcidid>https://orcid.org/0000000200449778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2021-10, Vol.99, p.162-170
issn 0898-1221
1873-7668
language eng
recordid cdi_osti_scitechconnect_1766472
source Elsevier ScienceDirect Journals
subjects DG discretization
Discretization
MATHEMATICS AND COMPUTING
Parallel-in-time
PFASST
Reaction-diffusion equation
Space-time multigrid
Spacetime
Strong and weak scalability
Time dependence
title An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20comparison%20of%20a%20space-time%20multigrid%20method%20with%20PFASST%20for%20a%20reaction-diffusion%20problem&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Benedusi,%20Pietro&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-10-01&rft.volume=99&rft.spage=162&rft.epage=170&rft.pages=162-170&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2021.07.008&rft_dat=%3Cproquest_osti_%3E2583114107%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583114107&rft_id=info:pmid/&rft_els_id=S0898122121002716&rfr_iscdi=true