Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites

•Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural and forest meteorology 2021-05, Vol.301-302 (C), p.108350, Article 108350
Hauptverfasser: Chu, Housen, Luo, Xiangzhong, Ouyang, Zutao, Chan, W. Stephen, Dengel, Sigrid, Biraud, Sébastien C., Torn, Margaret S., Metzger, Stefan, Kumar, Jitendra, Arain, M. Altaf, Arkebauer, Tim J., Baldocchi, Dennis, Bernacchi, Carl, Billesbach, Dave, Black, T. Andrew, Blanken, Peter D., Bohrer, Gil, Bracho, Rosvel, Brown, Shannon, Brunsell, Nathaniel A., Chen, Jiquan, Chen, Xingyuan, Clark, Kenneth, Desai, Ankur R., Duman, Tomer, Durden, David, Fares, Silvano, Forbrich, Inke, Gamon, John A., Gough, Christopher M., Griffis, Timothy, Helbig, Manuel, Hollinger, David, Humphreys, Elyn, Ikawa, Hiroki, Iwata, Hiroki, Ju, Yang, Knowles, John F., Knox, Sara H., Kobayashi, Hideki, Kolb, Thomas, Law, Beverly, Lee, Xuhui, Litvak, Marcy, Liu, Heping, Munger, J. William, Noormets, Asko, Novick, Kim, Oberbauer, Steven F., Oechel, Walter, Oikawa, Patty, Papuga, Shirley A., Pendall, Elise, Prajapati, Prajaya, Prueger, John, Quinton, William L, Richardson, Andrew D., Russell, Eric S., Scott, Russell L., Starr, Gregory, Staebler, Ralf, Stoy, Paul C., Stuart-Haëntjens, Ellen, Sonnentag, Oliver, Sullivan, Ryan C., Suyker, Andy, Ueyama, Masahito, Vargas, Rodrigo, Wood, Jeffrey D., Zona, Donatella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 108350
container_title Agricultural and forest meteorology
container_volume 301-302
creator Chu, Housen
Luo, Xiangzhong
Ouyang, Zutao
Chan, W. Stephen
Dengel, Sigrid
Biraud, Sébastien C.
Torn, Margaret S.
Metzger, Stefan
Kumar, Jitendra
Arain, M. Altaf
Arkebauer, Tim J.
Baldocchi, Dennis
Bernacchi, Carl
Billesbach, Dave
Black, T. Andrew
Blanken, Peter D.
Bohrer, Gil
Bracho, Rosvel
Brown, Shannon
Brunsell, Nathaniel A.
Chen, Jiquan
Chen, Xingyuan
Clark, Kenneth
Desai, Ankur R.
Duman, Tomer
Durden, David
Fares, Silvano
Forbrich, Inke
Gamon, John A.
Gough, Christopher M.
Griffis, Timothy
Helbig, Manuel
Hollinger, David
Humphreys, Elyn
Ikawa, Hiroki
Iwata, Hiroki
Ju, Yang
Knowles, John F.
Knox, Sara H.
Kobayashi, Hideki
Kolb, Thomas
Law, Beverly
Lee, Xuhui
Litvak, Marcy
Liu, Heping
Munger, J. William
Noormets, Asko
Novick, Kim
Oberbauer, Steven F.
Oechel, Walter
Oikawa, Patty
Papuga, Shirley A.
Pendall, Elise
Prajapati, Prajaya
Prueger, John
Quinton, William L
Richardson, Andrew D.
Russell, Eric S.
Scott, Russell L.
Starr, Gregory
Staebler, Ralf
Stoy, Paul C.
Stuart-Haëntjens, Ellen
Sonnentag, Oliver
Sullivan, Ryan C.
Suyker, Andy
Ueyama, Masahito
Vargas, Rodrigo
Wood, Jeffrey D.
Zona, Donatella
description •Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use. [Display omitted]
doi_str_mv 10.1016/j.agrformet.2021.108350
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1765897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168192321000332</els_id><sourcerecordid>S0168192321000332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-6b202a1b6844c34b3f37fc1920a6a1113f8bcd0e1ec2dfad231bc85fbedffcbf3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKu_wcX71kyy3d0eS2lVKAiiJw8hm0xqSpuUJC3235tlxaunGYY38958hNwDnQCF-nE7kZtgfNhjmjDKIE9bPqUXZARtw0vGKnpJRlnZljBj_JrcxLilFFjTzEbk8w0PASO6JJM9ocMYC2-KpdbncuFPMljpFBZmd_wujPfpEKxLMbehkAFlLOIxBH902rpNMd9jsKteGm3CeEuujNxFvPutY_KxWr4vnsv169PLYr4uFZ9BKusux5bQ1W1VKV513PDGqJyVyloCADdtpzRFQMW0kZpx6FQ7NR1qY1Rn-Jg8DHd9TFZElb3Vl_LOoUoCmnrazposagaRCj7GgEbkV_YynAVQ0YMUW_EHUvQgxQAyb86HTcw_nCyG3gIzFW1D76C9_ffGD01dg7I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chu, Housen ; Luo, Xiangzhong ; Ouyang, Zutao ; Chan, W. Stephen ; Dengel, Sigrid ; Biraud, Sébastien C. ; Torn, Margaret S. ; Metzger, Stefan ; Kumar, Jitendra ; Arain, M. Altaf ; Arkebauer, Tim J. ; Baldocchi, Dennis ; Bernacchi, Carl ; Billesbach, Dave ; Black, T. Andrew ; Blanken, Peter D. ; Bohrer, Gil ; Bracho, Rosvel ; Brown, Shannon ; Brunsell, Nathaniel A. ; Chen, Jiquan ; Chen, Xingyuan ; Clark, Kenneth ; Desai, Ankur R. ; Duman, Tomer ; Durden, David ; Fares, Silvano ; Forbrich, Inke ; Gamon, John A. ; Gough, Christopher M. ; Griffis, Timothy ; Helbig, Manuel ; Hollinger, David ; Humphreys, Elyn ; Ikawa, Hiroki ; Iwata, Hiroki ; Ju, Yang ; Knowles, John F. ; Knox, Sara H. ; Kobayashi, Hideki ; Kolb, Thomas ; Law, Beverly ; Lee, Xuhui ; Litvak, Marcy ; Liu, Heping ; Munger, J. William ; Noormets, Asko ; Novick, Kim ; Oberbauer, Steven F. ; Oechel, Walter ; Oikawa, Patty ; Papuga, Shirley A. ; Pendall, Elise ; Prajapati, Prajaya ; Prueger, John ; Quinton, William L ; Richardson, Andrew D. ; Russell, Eric S. ; Scott, Russell L. ; Starr, Gregory ; Staebler, Ralf ; Stoy, Paul C. ; Stuart-Haëntjens, Ellen ; Sonnentag, Oliver ; Sullivan, Ryan C. ; Suyker, Andy ; Ueyama, Masahito ; Vargas, Rodrigo ; Wood, Jeffrey D. ; Zona, Donatella</creator><creatorcontrib>Chu, Housen ; Luo, Xiangzhong ; Ouyang, Zutao ; Chan, W. Stephen ; Dengel, Sigrid ; Biraud, Sébastien C. ; Torn, Margaret S. ; Metzger, Stefan ; Kumar, Jitendra ; Arain, M. Altaf ; Arkebauer, Tim J. ; Baldocchi, Dennis ; Bernacchi, Carl ; Billesbach, Dave ; Black, T. Andrew ; Blanken, Peter D. ; Bohrer, Gil ; Bracho, Rosvel ; Brown, Shannon ; Brunsell, Nathaniel A. ; Chen, Jiquan ; Chen, Xingyuan ; Clark, Kenneth ; Desai, Ankur R. ; Duman, Tomer ; Durden, David ; Fares, Silvano ; Forbrich, Inke ; Gamon, John A. ; Gough, Christopher M. ; Griffis, Timothy ; Helbig, Manuel ; Hollinger, David ; Humphreys, Elyn ; Ikawa, Hiroki ; Iwata, Hiroki ; Ju, Yang ; Knowles, John F. ; Knox, Sara H. ; Kobayashi, Hideki ; Kolb, Thomas ; Law, Beverly ; Lee, Xuhui ; Litvak, Marcy ; Liu, Heping ; Munger, J. William ; Noormets, Asko ; Novick, Kim ; Oberbauer, Steven F. ; Oechel, Walter ; Oikawa, Patty ; Papuga, Shirley A. ; Pendall, Elise ; Prajapati, Prajaya ; Prueger, John ; Quinton, William L ; Richardson, Andrew D. ; Russell, Eric S. ; Scott, Russell L. ; Starr, Gregory ; Staebler, Ralf ; Stoy, Paul C. ; Stuart-Haëntjens, Ellen ; Sonnentag, Oliver ; Sullivan, Ryan C. ; Suyker, Andy ; Ueyama, Masahito ; Vargas, Rodrigo ; Wood, Jeffrey D. ; Zona, Donatella ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>•Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use. [Display omitted]</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/j.agrformet.2021.108350</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>ENVIRONMENTAL SCIENCES ; Flux footprint ; Land cover ; Landsat EVI ; Model-data benchmarking ; Sensor location bias ; Spatial representativeness ; spatial representatives</subject><ispartof>Agricultural and forest meteorology, 2021-05, Vol.301-302 (C), p.108350, Article 108350</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-6b202a1b6844c34b3f37fc1920a6a1113f8bcd0e1ec2dfad231bc85fbedffcbf3</citedby><cites>FETCH-LOGICAL-c391t-6b202a1b6844c34b3f37fc1920a6a1113f8bcd0e1ec2dfad231bc85fbedffcbf3</cites><orcidid>0000-0002-5226-6041 ; 0000-0002-2111-5144 ; 0000-0001-8661-9178 ; 0000-0001-6422-2882 ; 0000-0003-3496-4919 ; 0000-0002-3500-1842 ; 0000-0002-4000-4888 ; 0000-0002-3697-9439 ; 0000-0002-8962-8982 ; 0000-0002-6919-569X ; 0000-0002-1433-5173 ; 0000-0002-4460-8283 ; 0000-0001-9901-7643 ; 0000-0002-2397-425X ; 0000-0001-6829-5333 ; 0000-0002-4583-1559 ; 0000-0002-5397-2802 ; 0000-0002-7226-0640 ; 0000-0002-0148-6714 ; 0000-0002-8131-4938 ; 0000-0002-9209-9540 ; 0000-0003-1996-8639 ; 0000-0002-0159-0546 ; 0000-0001-9572-8325 ; 0000-0002-0003-4839 ; 0000-0002-7550-4874 ; 0000-0002-7405-2220 ; 0000000186619178 ; 0000000334964919 ; 0000000319968639 ; 0000000201486714 ; 0000000164222882 ; 0000000200034839 ; 0000000292099540 ; 0000000247749188 ; 0000000195728325 ; 0000000236979439 ; 0000000272260640 ; 0000000199017643 ; 0000000289628982 ; 0000000252266041 ; 0000000214335173 ; 0000000168295333 ; 0000000253972802 ; 0000000245831559 ; 0000000275504874 ; 0000000244608283 ; 000000026919569X ; 0000000274052220 ; 0000000235001842 ; 0000000281314938 ; 0000000240004888 ; 000000022397425X ; 0000000201590546 ; 0000000221115144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.agrformet.2021.108350$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1765897$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Housen</creatorcontrib><creatorcontrib>Luo, Xiangzhong</creatorcontrib><creatorcontrib>Ouyang, Zutao</creatorcontrib><creatorcontrib>Chan, W. Stephen</creatorcontrib><creatorcontrib>Dengel, Sigrid</creatorcontrib><creatorcontrib>Biraud, Sébastien C.</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Metzger, Stefan</creatorcontrib><creatorcontrib>Kumar, Jitendra</creatorcontrib><creatorcontrib>Arain, M. Altaf</creatorcontrib><creatorcontrib>Arkebauer, Tim J.</creatorcontrib><creatorcontrib>Baldocchi, Dennis</creatorcontrib><creatorcontrib>Bernacchi, Carl</creatorcontrib><creatorcontrib>Billesbach, Dave</creatorcontrib><creatorcontrib>Black, T. Andrew</creatorcontrib><creatorcontrib>Blanken, Peter D.</creatorcontrib><creatorcontrib>Bohrer, Gil</creatorcontrib><creatorcontrib>Bracho, Rosvel</creatorcontrib><creatorcontrib>Brown, Shannon</creatorcontrib><creatorcontrib>Brunsell, Nathaniel A.</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Clark, Kenneth</creatorcontrib><creatorcontrib>Desai, Ankur R.</creatorcontrib><creatorcontrib>Duman, Tomer</creatorcontrib><creatorcontrib>Durden, David</creatorcontrib><creatorcontrib>Fares, Silvano</creatorcontrib><creatorcontrib>Forbrich, Inke</creatorcontrib><creatorcontrib>Gamon, John A.</creatorcontrib><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Griffis, Timothy</creatorcontrib><creatorcontrib>Helbig, Manuel</creatorcontrib><creatorcontrib>Hollinger, David</creatorcontrib><creatorcontrib>Humphreys, Elyn</creatorcontrib><creatorcontrib>Ikawa, Hiroki</creatorcontrib><creatorcontrib>Iwata, Hiroki</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Knowles, John F.</creatorcontrib><creatorcontrib>Knox, Sara H.</creatorcontrib><creatorcontrib>Kobayashi, Hideki</creatorcontrib><creatorcontrib>Kolb, Thomas</creatorcontrib><creatorcontrib>Law, Beverly</creatorcontrib><creatorcontrib>Lee, Xuhui</creatorcontrib><creatorcontrib>Litvak, Marcy</creatorcontrib><creatorcontrib>Liu, Heping</creatorcontrib><creatorcontrib>Munger, J. William</creatorcontrib><creatorcontrib>Noormets, Asko</creatorcontrib><creatorcontrib>Novick, Kim</creatorcontrib><creatorcontrib>Oberbauer, Steven F.</creatorcontrib><creatorcontrib>Oechel, Walter</creatorcontrib><creatorcontrib>Oikawa, Patty</creatorcontrib><creatorcontrib>Papuga, Shirley A.</creatorcontrib><creatorcontrib>Pendall, Elise</creatorcontrib><creatorcontrib>Prajapati, Prajaya</creatorcontrib><creatorcontrib>Prueger, John</creatorcontrib><creatorcontrib>Quinton, William L</creatorcontrib><creatorcontrib>Richardson, Andrew D.</creatorcontrib><creatorcontrib>Russell, Eric S.</creatorcontrib><creatorcontrib>Scott, Russell L.</creatorcontrib><creatorcontrib>Starr, Gregory</creatorcontrib><creatorcontrib>Staebler, Ralf</creatorcontrib><creatorcontrib>Stoy, Paul C.</creatorcontrib><creatorcontrib>Stuart-Haëntjens, Ellen</creatorcontrib><creatorcontrib>Sonnentag, Oliver</creatorcontrib><creatorcontrib>Sullivan, Ryan C.</creatorcontrib><creatorcontrib>Suyker, Andy</creatorcontrib><creatorcontrib>Ueyama, Masahito</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><creatorcontrib>Wood, Jeffrey D.</creatorcontrib><creatorcontrib>Zona, Donatella</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites</title><title>Agricultural and forest meteorology</title><description>•Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use. [Display omitted]</description><subject>ENVIRONMENTAL SCIENCES</subject><subject>Flux footprint</subject><subject>Land cover</subject><subject>Landsat EVI</subject><subject>Model-data benchmarking</subject><subject>Sensor location bias</subject><subject>Spatial representativeness</subject><subject>spatial representatives</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKu_wcX71kyy3d0eS2lVKAiiJw8hm0xqSpuUJC3235tlxaunGYY38958hNwDnQCF-nE7kZtgfNhjmjDKIE9bPqUXZARtw0vGKnpJRlnZljBj_JrcxLilFFjTzEbk8w0PASO6JJM9ocMYC2-KpdbncuFPMljpFBZmd_wujPfpEKxLMbehkAFlLOIxBH902rpNMd9jsKteGm3CeEuujNxFvPutY_KxWr4vnsv169PLYr4uFZ9BKusux5bQ1W1VKV513PDGqJyVyloCADdtpzRFQMW0kZpx6FQ7NR1qY1Rn-Jg8DHd9TFZElb3Vl_LOoUoCmnrazposagaRCj7GgEbkV_YynAVQ0YMUW_EHUvQgxQAyb86HTcw_nCyG3gIzFW1D76C9_ffGD01dg7I</recordid><startdate>20210515</startdate><enddate>20210515</enddate><creator>Chu, Housen</creator><creator>Luo, Xiangzhong</creator><creator>Ouyang, Zutao</creator><creator>Chan, W. Stephen</creator><creator>Dengel, Sigrid</creator><creator>Biraud, Sébastien C.</creator><creator>Torn, Margaret S.</creator><creator>Metzger, Stefan</creator><creator>Kumar, Jitendra</creator><creator>Arain, M. Altaf</creator><creator>Arkebauer, Tim J.</creator><creator>Baldocchi, Dennis</creator><creator>Bernacchi, Carl</creator><creator>Billesbach, Dave</creator><creator>Black, T. Andrew</creator><creator>Blanken, Peter D.</creator><creator>Bohrer, Gil</creator><creator>Bracho, Rosvel</creator><creator>Brown, Shannon</creator><creator>Brunsell, Nathaniel A.</creator><creator>Chen, Jiquan</creator><creator>Chen, Xingyuan</creator><creator>Clark, Kenneth</creator><creator>Desai, Ankur R.</creator><creator>Duman, Tomer</creator><creator>Durden, David</creator><creator>Fares, Silvano</creator><creator>Forbrich, Inke</creator><creator>Gamon, John A.</creator><creator>Gough, Christopher M.</creator><creator>Griffis, Timothy</creator><creator>Helbig, Manuel</creator><creator>Hollinger, David</creator><creator>Humphreys, Elyn</creator><creator>Ikawa, Hiroki</creator><creator>Iwata, Hiroki</creator><creator>Ju, Yang</creator><creator>Knowles, John F.</creator><creator>Knox, Sara H.</creator><creator>Kobayashi, Hideki</creator><creator>Kolb, Thomas</creator><creator>Law, Beverly</creator><creator>Lee, Xuhui</creator><creator>Litvak, Marcy</creator><creator>Liu, Heping</creator><creator>Munger, J. William</creator><creator>Noormets, Asko</creator><creator>Novick, Kim</creator><creator>Oberbauer, Steven F.</creator><creator>Oechel, Walter</creator><creator>Oikawa, Patty</creator><creator>Papuga, Shirley A.</creator><creator>Pendall, Elise</creator><creator>Prajapati, Prajaya</creator><creator>Prueger, John</creator><creator>Quinton, William L</creator><creator>Richardson, Andrew D.</creator><creator>Russell, Eric S.</creator><creator>Scott, Russell L.</creator><creator>Starr, Gregory</creator><creator>Staebler, Ralf</creator><creator>Stoy, Paul C.</creator><creator>Stuart-Haëntjens, Ellen</creator><creator>Sonnentag, Oliver</creator><creator>Sullivan, Ryan C.</creator><creator>Suyker, Andy</creator><creator>Ueyama, Masahito</creator><creator>Vargas, Rodrigo</creator><creator>Wood, Jeffrey D.</creator><creator>Zona, Donatella</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5226-6041</orcidid><orcidid>https://orcid.org/0000-0002-2111-5144</orcidid><orcidid>https://orcid.org/0000-0001-8661-9178</orcidid><orcidid>https://orcid.org/0000-0001-6422-2882</orcidid><orcidid>https://orcid.org/0000-0003-3496-4919</orcidid><orcidid>https://orcid.org/0000-0002-3500-1842</orcidid><orcidid>https://orcid.org/0000-0002-4000-4888</orcidid><orcidid>https://orcid.org/0000-0002-3697-9439</orcidid><orcidid>https://orcid.org/0000-0002-8962-8982</orcidid><orcidid>https://orcid.org/0000-0002-6919-569X</orcidid><orcidid>https://orcid.org/0000-0002-1433-5173</orcidid><orcidid>https://orcid.org/0000-0002-4460-8283</orcidid><orcidid>https://orcid.org/0000-0001-9901-7643</orcidid><orcidid>https://orcid.org/0000-0002-2397-425X</orcidid><orcidid>https://orcid.org/0000-0001-6829-5333</orcidid><orcidid>https://orcid.org/0000-0002-4583-1559</orcidid><orcidid>https://orcid.org/0000-0002-5397-2802</orcidid><orcidid>https://orcid.org/0000-0002-7226-0640</orcidid><orcidid>https://orcid.org/0000-0002-0148-6714</orcidid><orcidid>https://orcid.org/0000-0002-8131-4938</orcidid><orcidid>https://orcid.org/0000-0002-9209-9540</orcidid><orcidid>https://orcid.org/0000-0003-1996-8639</orcidid><orcidid>https://orcid.org/0000-0002-0159-0546</orcidid><orcidid>https://orcid.org/0000-0001-9572-8325</orcidid><orcidid>https://orcid.org/0000-0002-0003-4839</orcidid><orcidid>https://orcid.org/0000-0002-7550-4874</orcidid><orcidid>https://orcid.org/0000-0002-7405-2220</orcidid><orcidid>https://orcid.org/0000000186619178</orcidid><orcidid>https://orcid.org/0000000334964919</orcidid><orcidid>https://orcid.org/0000000319968639</orcidid><orcidid>https://orcid.org/0000000201486714</orcidid><orcidid>https://orcid.org/0000000164222882</orcidid><orcidid>https://orcid.org/0000000200034839</orcidid><orcidid>https://orcid.org/0000000292099540</orcidid><orcidid>https://orcid.org/0000000247749188</orcidid><orcidid>https://orcid.org/0000000195728325</orcidid><orcidid>https://orcid.org/0000000236979439</orcidid><orcidid>https://orcid.org/0000000272260640</orcidid><orcidid>https://orcid.org/0000000199017643</orcidid><orcidid>https://orcid.org/0000000289628982</orcidid><orcidid>https://orcid.org/0000000252266041</orcidid><orcidid>https://orcid.org/0000000214335173</orcidid><orcidid>https://orcid.org/0000000168295333</orcidid><orcidid>https://orcid.org/0000000253972802</orcidid><orcidid>https://orcid.org/0000000245831559</orcidid><orcidid>https://orcid.org/0000000275504874</orcidid><orcidid>https://orcid.org/0000000244608283</orcidid><orcidid>https://orcid.org/000000026919569X</orcidid><orcidid>https://orcid.org/0000000274052220</orcidid><orcidid>https://orcid.org/0000000235001842</orcidid><orcidid>https://orcid.org/0000000281314938</orcidid><orcidid>https://orcid.org/0000000240004888</orcidid><orcidid>https://orcid.org/000000022397425X</orcidid><orcidid>https://orcid.org/0000000201590546</orcidid><orcidid>https://orcid.org/0000000221115144</orcidid></search><sort><creationdate>20210515</creationdate><title>Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites</title><author>Chu, Housen ; Luo, Xiangzhong ; Ouyang, Zutao ; Chan, W. Stephen ; Dengel, Sigrid ; Biraud, Sébastien C. ; Torn, Margaret S. ; Metzger, Stefan ; Kumar, Jitendra ; Arain, M. Altaf ; Arkebauer, Tim J. ; Baldocchi, Dennis ; Bernacchi, Carl ; Billesbach, Dave ; Black, T. Andrew ; Blanken, Peter D. ; Bohrer, Gil ; Bracho, Rosvel ; Brown, Shannon ; Brunsell, Nathaniel A. ; Chen, Jiquan ; Chen, Xingyuan ; Clark, Kenneth ; Desai, Ankur R. ; Duman, Tomer ; Durden, David ; Fares, Silvano ; Forbrich, Inke ; Gamon, John A. ; Gough, Christopher M. ; Griffis, Timothy ; Helbig, Manuel ; Hollinger, David ; Humphreys, Elyn ; Ikawa, Hiroki ; Iwata, Hiroki ; Ju, Yang ; Knowles, John F. ; Knox, Sara H. ; Kobayashi, Hideki ; Kolb, Thomas ; Law, Beverly ; Lee, Xuhui ; Litvak, Marcy ; Liu, Heping ; Munger, J. William ; Noormets, Asko ; Novick, Kim ; Oberbauer, Steven F. ; Oechel, Walter ; Oikawa, Patty ; Papuga, Shirley A. ; Pendall, Elise ; Prajapati, Prajaya ; Prueger, John ; Quinton, William L ; Richardson, Andrew D. ; Russell, Eric S. ; Scott, Russell L. ; Starr, Gregory ; Staebler, Ralf ; Stoy, Paul C. ; Stuart-Haëntjens, Ellen ; Sonnentag, Oliver ; Sullivan, Ryan C. ; Suyker, Andy ; Ueyama, Masahito ; Vargas, Rodrigo ; Wood, Jeffrey D. ; Zona, Donatella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-6b202a1b6844c34b3f37fc1920a6a1113f8bcd0e1ec2dfad231bc85fbedffcbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ENVIRONMENTAL SCIENCES</topic><topic>Flux footprint</topic><topic>Land cover</topic><topic>Landsat EVI</topic><topic>Model-data benchmarking</topic><topic>Sensor location bias</topic><topic>Spatial representativeness</topic><topic>spatial representatives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Housen</creatorcontrib><creatorcontrib>Luo, Xiangzhong</creatorcontrib><creatorcontrib>Ouyang, Zutao</creatorcontrib><creatorcontrib>Chan, W. Stephen</creatorcontrib><creatorcontrib>Dengel, Sigrid</creatorcontrib><creatorcontrib>Biraud, Sébastien C.</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Metzger, Stefan</creatorcontrib><creatorcontrib>Kumar, Jitendra</creatorcontrib><creatorcontrib>Arain, M. Altaf</creatorcontrib><creatorcontrib>Arkebauer, Tim J.</creatorcontrib><creatorcontrib>Baldocchi, Dennis</creatorcontrib><creatorcontrib>Bernacchi, Carl</creatorcontrib><creatorcontrib>Billesbach, Dave</creatorcontrib><creatorcontrib>Black, T. Andrew</creatorcontrib><creatorcontrib>Blanken, Peter D.</creatorcontrib><creatorcontrib>Bohrer, Gil</creatorcontrib><creatorcontrib>Bracho, Rosvel</creatorcontrib><creatorcontrib>Brown, Shannon</creatorcontrib><creatorcontrib>Brunsell, Nathaniel A.</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Clark, Kenneth</creatorcontrib><creatorcontrib>Desai, Ankur R.</creatorcontrib><creatorcontrib>Duman, Tomer</creatorcontrib><creatorcontrib>Durden, David</creatorcontrib><creatorcontrib>Fares, Silvano</creatorcontrib><creatorcontrib>Forbrich, Inke</creatorcontrib><creatorcontrib>Gamon, John A.</creatorcontrib><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Griffis, Timothy</creatorcontrib><creatorcontrib>Helbig, Manuel</creatorcontrib><creatorcontrib>Hollinger, David</creatorcontrib><creatorcontrib>Humphreys, Elyn</creatorcontrib><creatorcontrib>Ikawa, Hiroki</creatorcontrib><creatorcontrib>Iwata, Hiroki</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Knowles, John F.</creatorcontrib><creatorcontrib>Knox, Sara H.</creatorcontrib><creatorcontrib>Kobayashi, Hideki</creatorcontrib><creatorcontrib>Kolb, Thomas</creatorcontrib><creatorcontrib>Law, Beverly</creatorcontrib><creatorcontrib>Lee, Xuhui</creatorcontrib><creatorcontrib>Litvak, Marcy</creatorcontrib><creatorcontrib>Liu, Heping</creatorcontrib><creatorcontrib>Munger, J. William</creatorcontrib><creatorcontrib>Noormets, Asko</creatorcontrib><creatorcontrib>Novick, Kim</creatorcontrib><creatorcontrib>Oberbauer, Steven F.</creatorcontrib><creatorcontrib>Oechel, Walter</creatorcontrib><creatorcontrib>Oikawa, Patty</creatorcontrib><creatorcontrib>Papuga, Shirley A.</creatorcontrib><creatorcontrib>Pendall, Elise</creatorcontrib><creatorcontrib>Prajapati, Prajaya</creatorcontrib><creatorcontrib>Prueger, John</creatorcontrib><creatorcontrib>Quinton, William L</creatorcontrib><creatorcontrib>Richardson, Andrew D.</creatorcontrib><creatorcontrib>Russell, Eric S.</creatorcontrib><creatorcontrib>Scott, Russell L.</creatorcontrib><creatorcontrib>Starr, Gregory</creatorcontrib><creatorcontrib>Staebler, Ralf</creatorcontrib><creatorcontrib>Stoy, Paul C.</creatorcontrib><creatorcontrib>Stuart-Haëntjens, Ellen</creatorcontrib><creatorcontrib>Sonnentag, Oliver</creatorcontrib><creatorcontrib>Sullivan, Ryan C.</creatorcontrib><creatorcontrib>Suyker, Andy</creatorcontrib><creatorcontrib>Ueyama, Masahito</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><creatorcontrib>Wood, Jeffrey D.</creatorcontrib><creatorcontrib>Zona, Donatella</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Housen</au><au>Luo, Xiangzhong</au><au>Ouyang, Zutao</au><au>Chan, W. Stephen</au><au>Dengel, Sigrid</au><au>Biraud, Sébastien C.</au><au>Torn, Margaret S.</au><au>Metzger, Stefan</au><au>Kumar, Jitendra</au><au>Arain, M. Altaf</au><au>Arkebauer, Tim J.</au><au>Baldocchi, Dennis</au><au>Bernacchi, Carl</au><au>Billesbach, Dave</au><au>Black, T. Andrew</au><au>Blanken, Peter D.</au><au>Bohrer, Gil</au><au>Bracho, Rosvel</au><au>Brown, Shannon</au><au>Brunsell, Nathaniel A.</au><au>Chen, Jiquan</au><au>Chen, Xingyuan</au><au>Clark, Kenneth</au><au>Desai, Ankur R.</au><au>Duman, Tomer</au><au>Durden, David</au><au>Fares, Silvano</au><au>Forbrich, Inke</au><au>Gamon, John A.</au><au>Gough, Christopher M.</au><au>Griffis, Timothy</au><au>Helbig, Manuel</au><au>Hollinger, David</au><au>Humphreys, Elyn</au><au>Ikawa, Hiroki</au><au>Iwata, Hiroki</au><au>Ju, Yang</au><au>Knowles, John F.</au><au>Knox, Sara H.</au><au>Kobayashi, Hideki</au><au>Kolb, Thomas</au><au>Law, Beverly</au><au>Lee, Xuhui</au><au>Litvak, Marcy</au><au>Liu, Heping</au><au>Munger, J. William</au><au>Noormets, Asko</au><au>Novick, Kim</au><au>Oberbauer, Steven F.</au><au>Oechel, Walter</au><au>Oikawa, Patty</au><au>Papuga, Shirley A.</au><au>Pendall, Elise</au><au>Prajapati, Prajaya</au><au>Prueger, John</au><au>Quinton, William L</au><au>Richardson, Andrew D.</au><au>Russell, Eric S.</au><au>Scott, Russell L.</au><au>Starr, Gregory</au><au>Staebler, Ralf</au><au>Stoy, Paul C.</au><au>Stuart-Haëntjens, Ellen</au><au>Sonnentag, Oliver</au><au>Sullivan, Ryan C.</au><au>Suyker, Andy</au><au>Ueyama, Masahito</au><au>Vargas, Rodrigo</au><au>Wood, Jeffrey D.</au><au>Zona, Donatella</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>2021-05-15</date><risdate>2021</risdate><volume>301-302</volume><issue>C</issue><spage>108350</spage><pages>108350-</pages><artnum>108350</artnum><issn>0168-1923</issn><eissn>1873-2240</eissn><abstract>•Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.agrformet.2021.108350</doi><orcidid>https://orcid.org/0000-0002-5226-6041</orcidid><orcidid>https://orcid.org/0000-0002-2111-5144</orcidid><orcidid>https://orcid.org/0000-0001-8661-9178</orcidid><orcidid>https://orcid.org/0000-0001-6422-2882</orcidid><orcidid>https://orcid.org/0000-0003-3496-4919</orcidid><orcidid>https://orcid.org/0000-0002-3500-1842</orcidid><orcidid>https://orcid.org/0000-0002-4000-4888</orcidid><orcidid>https://orcid.org/0000-0002-3697-9439</orcidid><orcidid>https://orcid.org/0000-0002-8962-8982</orcidid><orcidid>https://orcid.org/0000-0002-6919-569X</orcidid><orcidid>https://orcid.org/0000-0002-1433-5173</orcidid><orcidid>https://orcid.org/0000-0002-4460-8283</orcidid><orcidid>https://orcid.org/0000-0001-9901-7643</orcidid><orcidid>https://orcid.org/0000-0002-2397-425X</orcidid><orcidid>https://orcid.org/0000-0001-6829-5333</orcidid><orcidid>https://orcid.org/0000-0002-4583-1559</orcidid><orcidid>https://orcid.org/0000-0002-5397-2802</orcidid><orcidid>https://orcid.org/0000-0002-7226-0640</orcidid><orcidid>https://orcid.org/0000-0002-0148-6714</orcidid><orcidid>https://orcid.org/0000-0002-8131-4938</orcidid><orcidid>https://orcid.org/0000-0002-9209-9540</orcidid><orcidid>https://orcid.org/0000-0003-1996-8639</orcidid><orcidid>https://orcid.org/0000-0002-0159-0546</orcidid><orcidid>https://orcid.org/0000-0001-9572-8325</orcidid><orcidid>https://orcid.org/0000-0002-0003-4839</orcidid><orcidid>https://orcid.org/0000-0002-7550-4874</orcidid><orcidid>https://orcid.org/0000-0002-7405-2220</orcidid><orcidid>https://orcid.org/0000000186619178</orcidid><orcidid>https://orcid.org/0000000334964919</orcidid><orcidid>https://orcid.org/0000000319968639</orcidid><orcidid>https://orcid.org/0000000201486714</orcidid><orcidid>https://orcid.org/0000000164222882</orcidid><orcidid>https://orcid.org/0000000200034839</orcidid><orcidid>https://orcid.org/0000000292099540</orcidid><orcidid>https://orcid.org/0000000247749188</orcidid><orcidid>https://orcid.org/0000000195728325</orcidid><orcidid>https://orcid.org/0000000236979439</orcidid><orcidid>https://orcid.org/0000000272260640</orcidid><orcidid>https://orcid.org/0000000199017643</orcidid><orcidid>https://orcid.org/0000000289628982</orcidid><orcidid>https://orcid.org/0000000252266041</orcidid><orcidid>https://orcid.org/0000000214335173</orcidid><orcidid>https://orcid.org/0000000168295333</orcidid><orcidid>https://orcid.org/0000000253972802</orcidid><orcidid>https://orcid.org/0000000245831559</orcidid><orcidid>https://orcid.org/0000000275504874</orcidid><orcidid>https://orcid.org/0000000244608283</orcidid><orcidid>https://orcid.org/000000026919569X</orcidid><orcidid>https://orcid.org/0000000274052220</orcidid><orcidid>https://orcid.org/0000000235001842</orcidid><orcidid>https://orcid.org/0000000281314938</orcidid><orcidid>https://orcid.org/0000000240004888</orcidid><orcidid>https://orcid.org/000000022397425X</orcidid><orcidid>https://orcid.org/0000000201590546</orcidid><orcidid>https://orcid.org/0000000221115144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-1923
ispartof Agricultural and forest meteorology, 2021-05, Vol.301-302 (C), p.108350, Article 108350
issn 0168-1923
1873-2240
language eng
recordid cdi_osti_scitechconnect_1765897
source Access via ScienceDirect (Elsevier)
subjects ENVIRONMENTAL SCIENCES
Flux footprint
Land cover
Landsat EVI
Model-data benchmarking
Sensor location bias
Spatial representativeness
spatial representatives
title Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representativeness%20of%20Eddy-Covariance%20flux%20footprints%20for%20areas%20surrounding%20AmeriFlux%20sites&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Chu,%20Housen&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2021-05-15&rft.volume=301-302&rft.issue=C&rft.spage=108350&rft.pages=108350-&rft.artnum=108350&rft.issn=0168-1923&rft.eissn=1873-2240&rft_id=info:doi/10.1016/j.agrformet.2021.108350&rft_dat=%3Celsevier_osti_%3ES0168192321000332%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168192321000332&rfr_iscdi=true