Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
•Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance f...
Gespeichert in:
Veröffentlicht in: | Agricultural and forest meteorology 2021-05, Vol.301-302 (C), p.108350, Article 108350 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 108350 |
container_title | Agricultural and forest meteorology |
container_volume | 301-302 |
creator | Chu, Housen Luo, Xiangzhong Ouyang, Zutao Chan, W. Stephen Dengel, Sigrid Biraud, Sébastien C. Torn, Margaret S. Metzger, Stefan Kumar, Jitendra Arain, M. Altaf Arkebauer, Tim J. Baldocchi, Dennis Bernacchi, Carl Billesbach, Dave Black, T. Andrew Blanken, Peter D. Bohrer, Gil Bracho, Rosvel Brown, Shannon Brunsell, Nathaniel A. Chen, Jiquan Chen, Xingyuan Clark, Kenneth Desai, Ankur R. Duman, Tomer Durden, David Fares, Silvano Forbrich, Inke Gamon, John A. Gough, Christopher M. Griffis, Timothy Helbig, Manuel Hollinger, David Humphreys, Elyn Ikawa, Hiroki Iwata, Hiroki Ju, Yang Knowles, John F. Knox, Sara H. Kobayashi, Hideki Kolb, Thomas Law, Beverly Lee, Xuhui Litvak, Marcy Liu, Heping Munger, J. William Noormets, Asko Novick, Kim Oberbauer, Steven F. Oechel, Walter Oikawa, Patty Papuga, Shirley A. Pendall, Elise Prajapati, Prajaya Prueger, John Quinton, William L Richardson, Andrew D. Russell, Eric S. Scott, Russell L. Starr, Gregory Staebler, Ralf Stoy, Paul C. Stuart-Haëntjens, Ellen Sonnentag, Oliver Sullivan, Ryan C. Suyker, Andy Ueyama, Masahito Vargas, Rodrigo Wood, Jeffrey D. Zona, Donatella |
description | •Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance for site selection and data use
Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
[Display omitted] |
doi_str_mv | 10.1016/j.agrformet.2021.108350 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1765897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168192321000332</els_id><sourcerecordid>S0168192321000332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-6b202a1b6844c34b3f37fc1920a6a1113f8bcd0e1ec2dfad231bc85fbedffcbf3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKu_wcX71kyy3d0eS2lVKAiiJw8hm0xqSpuUJC3235tlxaunGYY38958hNwDnQCF-nE7kZtgfNhjmjDKIE9bPqUXZARtw0vGKnpJRlnZljBj_JrcxLilFFjTzEbk8w0PASO6JJM9ocMYC2-KpdbncuFPMljpFBZmd_wujPfpEKxLMbehkAFlLOIxBH902rpNMd9jsKteGm3CeEuujNxFvPutY_KxWr4vnsv169PLYr4uFZ9BKusux5bQ1W1VKV513PDGqJyVyloCADdtpzRFQMW0kZpx6FQ7NR1qY1Rn-Jg8DHd9TFZElb3Vl_LOoUoCmnrazposagaRCj7GgEbkV_YynAVQ0YMUW_EHUvQgxQAyb86HTcw_nCyG3gIzFW1D76C9_ffGD01dg7I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chu, Housen ; Luo, Xiangzhong ; Ouyang, Zutao ; Chan, W. Stephen ; Dengel, Sigrid ; Biraud, Sébastien C. ; Torn, Margaret S. ; Metzger, Stefan ; Kumar, Jitendra ; Arain, M. Altaf ; Arkebauer, Tim J. ; Baldocchi, Dennis ; Bernacchi, Carl ; Billesbach, Dave ; Black, T. Andrew ; Blanken, Peter D. ; Bohrer, Gil ; Bracho, Rosvel ; Brown, Shannon ; Brunsell, Nathaniel A. ; Chen, Jiquan ; Chen, Xingyuan ; Clark, Kenneth ; Desai, Ankur R. ; Duman, Tomer ; Durden, David ; Fares, Silvano ; Forbrich, Inke ; Gamon, John A. ; Gough, Christopher M. ; Griffis, Timothy ; Helbig, Manuel ; Hollinger, David ; Humphreys, Elyn ; Ikawa, Hiroki ; Iwata, Hiroki ; Ju, Yang ; Knowles, John F. ; Knox, Sara H. ; Kobayashi, Hideki ; Kolb, Thomas ; Law, Beverly ; Lee, Xuhui ; Litvak, Marcy ; Liu, Heping ; Munger, J. William ; Noormets, Asko ; Novick, Kim ; Oberbauer, Steven F. ; Oechel, Walter ; Oikawa, Patty ; Papuga, Shirley A. ; Pendall, Elise ; Prajapati, Prajaya ; Prueger, John ; Quinton, William L ; Richardson, Andrew D. ; Russell, Eric S. ; Scott, Russell L. ; Starr, Gregory ; Staebler, Ralf ; Stoy, Paul C. ; Stuart-Haëntjens, Ellen ; Sonnentag, Oliver ; Sullivan, Ryan C. ; Suyker, Andy ; Ueyama, Masahito ; Vargas, Rodrigo ; Wood, Jeffrey D. ; Zona, Donatella</creator><creatorcontrib>Chu, Housen ; Luo, Xiangzhong ; Ouyang, Zutao ; Chan, W. Stephen ; Dengel, Sigrid ; Biraud, Sébastien C. ; Torn, Margaret S. ; Metzger, Stefan ; Kumar, Jitendra ; Arain, M. Altaf ; Arkebauer, Tim J. ; Baldocchi, Dennis ; Bernacchi, Carl ; Billesbach, Dave ; Black, T. Andrew ; Blanken, Peter D. ; Bohrer, Gil ; Bracho, Rosvel ; Brown, Shannon ; Brunsell, Nathaniel A. ; Chen, Jiquan ; Chen, Xingyuan ; Clark, Kenneth ; Desai, Ankur R. ; Duman, Tomer ; Durden, David ; Fares, Silvano ; Forbrich, Inke ; Gamon, John A. ; Gough, Christopher M. ; Griffis, Timothy ; Helbig, Manuel ; Hollinger, David ; Humphreys, Elyn ; Ikawa, Hiroki ; Iwata, Hiroki ; Ju, Yang ; Knowles, John F. ; Knox, Sara H. ; Kobayashi, Hideki ; Kolb, Thomas ; Law, Beverly ; Lee, Xuhui ; Litvak, Marcy ; Liu, Heping ; Munger, J. William ; Noormets, Asko ; Novick, Kim ; Oberbauer, Steven F. ; Oechel, Walter ; Oikawa, Patty ; Papuga, Shirley A. ; Pendall, Elise ; Prajapati, Prajaya ; Prueger, John ; Quinton, William L ; Richardson, Andrew D. ; Russell, Eric S. ; Scott, Russell L. ; Starr, Gregory ; Staebler, Ralf ; Stoy, Paul C. ; Stuart-Haëntjens, Ellen ; Sonnentag, Oliver ; Sullivan, Ryan C. ; Suyker, Andy ; Ueyama, Masahito ; Vargas, Rodrigo ; Wood, Jeffrey D. ; Zona, Donatella ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>•Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance for site selection and data use
Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
[Display omitted]</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/j.agrformet.2021.108350</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>ENVIRONMENTAL SCIENCES ; Flux footprint ; Land cover ; Landsat EVI ; Model-data benchmarking ; Sensor location bias ; Spatial representativeness ; spatial representatives</subject><ispartof>Agricultural and forest meteorology, 2021-05, Vol.301-302 (C), p.108350, Article 108350</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-6b202a1b6844c34b3f37fc1920a6a1113f8bcd0e1ec2dfad231bc85fbedffcbf3</citedby><cites>FETCH-LOGICAL-c391t-6b202a1b6844c34b3f37fc1920a6a1113f8bcd0e1ec2dfad231bc85fbedffcbf3</cites><orcidid>0000-0002-5226-6041 ; 0000-0002-2111-5144 ; 0000-0001-8661-9178 ; 0000-0001-6422-2882 ; 0000-0003-3496-4919 ; 0000-0002-3500-1842 ; 0000-0002-4000-4888 ; 0000-0002-3697-9439 ; 0000-0002-8962-8982 ; 0000-0002-6919-569X ; 0000-0002-1433-5173 ; 0000-0002-4460-8283 ; 0000-0001-9901-7643 ; 0000-0002-2397-425X ; 0000-0001-6829-5333 ; 0000-0002-4583-1559 ; 0000-0002-5397-2802 ; 0000-0002-7226-0640 ; 0000-0002-0148-6714 ; 0000-0002-8131-4938 ; 0000-0002-9209-9540 ; 0000-0003-1996-8639 ; 0000-0002-0159-0546 ; 0000-0001-9572-8325 ; 0000-0002-0003-4839 ; 0000-0002-7550-4874 ; 0000-0002-7405-2220 ; 0000000186619178 ; 0000000334964919 ; 0000000319968639 ; 0000000201486714 ; 0000000164222882 ; 0000000200034839 ; 0000000292099540 ; 0000000247749188 ; 0000000195728325 ; 0000000236979439 ; 0000000272260640 ; 0000000199017643 ; 0000000289628982 ; 0000000252266041 ; 0000000214335173 ; 0000000168295333 ; 0000000253972802 ; 0000000245831559 ; 0000000275504874 ; 0000000244608283 ; 000000026919569X ; 0000000274052220 ; 0000000235001842 ; 0000000281314938 ; 0000000240004888 ; 000000022397425X ; 0000000201590546 ; 0000000221115144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.agrformet.2021.108350$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1765897$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Housen</creatorcontrib><creatorcontrib>Luo, Xiangzhong</creatorcontrib><creatorcontrib>Ouyang, Zutao</creatorcontrib><creatorcontrib>Chan, W. Stephen</creatorcontrib><creatorcontrib>Dengel, Sigrid</creatorcontrib><creatorcontrib>Biraud, Sébastien C.</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Metzger, Stefan</creatorcontrib><creatorcontrib>Kumar, Jitendra</creatorcontrib><creatorcontrib>Arain, M. Altaf</creatorcontrib><creatorcontrib>Arkebauer, Tim J.</creatorcontrib><creatorcontrib>Baldocchi, Dennis</creatorcontrib><creatorcontrib>Bernacchi, Carl</creatorcontrib><creatorcontrib>Billesbach, Dave</creatorcontrib><creatorcontrib>Black, T. Andrew</creatorcontrib><creatorcontrib>Blanken, Peter D.</creatorcontrib><creatorcontrib>Bohrer, Gil</creatorcontrib><creatorcontrib>Bracho, Rosvel</creatorcontrib><creatorcontrib>Brown, Shannon</creatorcontrib><creatorcontrib>Brunsell, Nathaniel A.</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Clark, Kenneth</creatorcontrib><creatorcontrib>Desai, Ankur R.</creatorcontrib><creatorcontrib>Duman, Tomer</creatorcontrib><creatorcontrib>Durden, David</creatorcontrib><creatorcontrib>Fares, Silvano</creatorcontrib><creatorcontrib>Forbrich, Inke</creatorcontrib><creatorcontrib>Gamon, John A.</creatorcontrib><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Griffis, Timothy</creatorcontrib><creatorcontrib>Helbig, Manuel</creatorcontrib><creatorcontrib>Hollinger, David</creatorcontrib><creatorcontrib>Humphreys, Elyn</creatorcontrib><creatorcontrib>Ikawa, Hiroki</creatorcontrib><creatorcontrib>Iwata, Hiroki</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Knowles, John F.</creatorcontrib><creatorcontrib>Knox, Sara H.</creatorcontrib><creatorcontrib>Kobayashi, Hideki</creatorcontrib><creatorcontrib>Kolb, Thomas</creatorcontrib><creatorcontrib>Law, Beverly</creatorcontrib><creatorcontrib>Lee, Xuhui</creatorcontrib><creatorcontrib>Litvak, Marcy</creatorcontrib><creatorcontrib>Liu, Heping</creatorcontrib><creatorcontrib>Munger, J. William</creatorcontrib><creatorcontrib>Noormets, Asko</creatorcontrib><creatorcontrib>Novick, Kim</creatorcontrib><creatorcontrib>Oberbauer, Steven F.</creatorcontrib><creatorcontrib>Oechel, Walter</creatorcontrib><creatorcontrib>Oikawa, Patty</creatorcontrib><creatorcontrib>Papuga, Shirley A.</creatorcontrib><creatorcontrib>Pendall, Elise</creatorcontrib><creatorcontrib>Prajapati, Prajaya</creatorcontrib><creatorcontrib>Prueger, John</creatorcontrib><creatorcontrib>Quinton, William L</creatorcontrib><creatorcontrib>Richardson, Andrew D.</creatorcontrib><creatorcontrib>Russell, Eric S.</creatorcontrib><creatorcontrib>Scott, Russell L.</creatorcontrib><creatorcontrib>Starr, Gregory</creatorcontrib><creatorcontrib>Staebler, Ralf</creatorcontrib><creatorcontrib>Stoy, Paul C.</creatorcontrib><creatorcontrib>Stuart-Haëntjens, Ellen</creatorcontrib><creatorcontrib>Sonnentag, Oliver</creatorcontrib><creatorcontrib>Sullivan, Ryan C.</creatorcontrib><creatorcontrib>Suyker, Andy</creatorcontrib><creatorcontrib>Ueyama, Masahito</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><creatorcontrib>Wood, Jeffrey D.</creatorcontrib><creatorcontrib>Zona, Donatella</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites</title><title>Agricultural and forest meteorology</title><description>•Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance for site selection and data use
Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
[Display omitted]</description><subject>ENVIRONMENTAL SCIENCES</subject><subject>Flux footprint</subject><subject>Land cover</subject><subject>Landsat EVI</subject><subject>Model-data benchmarking</subject><subject>Sensor location bias</subject><subject>Spatial representativeness</subject><subject>spatial representatives</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKu_wcX71kyy3d0eS2lVKAiiJw8hm0xqSpuUJC3235tlxaunGYY38958hNwDnQCF-nE7kZtgfNhjmjDKIE9bPqUXZARtw0vGKnpJRlnZljBj_JrcxLilFFjTzEbk8w0PASO6JJM9ocMYC2-KpdbncuFPMljpFBZmd_wujPfpEKxLMbehkAFlLOIxBH902rpNMd9jsKteGm3CeEuujNxFvPutY_KxWr4vnsv169PLYr4uFZ9BKusux5bQ1W1VKV513PDGqJyVyloCADdtpzRFQMW0kZpx6FQ7NR1qY1Rn-Jg8DHd9TFZElb3Vl_LOoUoCmnrazposagaRCj7GgEbkV_YynAVQ0YMUW_EHUvQgxQAyb86HTcw_nCyG3gIzFW1D76C9_ffGD01dg7I</recordid><startdate>20210515</startdate><enddate>20210515</enddate><creator>Chu, Housen</creator><creator>Luo, Xiangzhong</creator><creator>Ouyang, Zutao</creator><creator>Chan, W. Stephen</creator><creator>Dengel, Sigrid</creator><creator>Biraud, Sébastien C.</creator><creator>Torn, Margaret S.</creator><creator>Metzger, Stefan</creator><creator>Kumar, Jitendra</creator><creator>Arain, M. Altaf</creator><creator>Arkebauer, Tim J.</creator><creator>Baldocchi, Dennis</creator><creator>Bernacchi, Carl</creator><creator>Billesbach, Dave</creator><creator>Black, T. Andrew</creator><creator>Blanken, Peter D.</creator><creator>Bohrer, Gil</creator><creator>Bracho, Rosvel</creator><creator>Brown, Shannon</creator><creator>Brunsell, Nathaniel A.</creator><creator>Chen, Jiquan</creator><creator>Chen, Xingyuan</creator><creator>Clark, Kenneth</creator><creator>Desai, Ankur R.</creator><creator>Duman, Tomer</creator><creator>Durden, David</creator><creator>Fares, Silvano</creator><creator>Forbrich, Inke</creator><creator>Gamon, John A.</creator><creator>Gough, Christopher M.</creator><creator>Griffis, Timothy</creator><creator>Helbig, Manuel</creator><creator>Hollinger, David</creator><creator>Humphreys, Elyn</creator><creator>Ikawa, Hiroki</creator><creator>Iwata, Hiroki</creator><creator>Ju, Yang</creator><creator>Knowles, John F.</creator><creator>Knox, Sara H.</creator><creator>Kobayashi, Hideki</creator><creator>Kolb, Thomas</creator><creator>Law, Beverly</creator><creator>Lee, Xuhui</creator><creator>Litvak, Marcy</creator><creator>Liu, Heping</creator><creator>Munger, J. William</creator><creator>Noormets, Asko</creator><creator>Novick, Kim</creator><creator>Oberbauer, Steven F.</creator><creator>Oechel, Walter</creator><creator>Oikawa, Patty</creator><creator>Papuga, Shirley A.</creator><creator>Pendall, Elise</creator><creator>Prajapati, Prajaya</creator><creator>Prueger, John</creator><creator>Quinton, William L</creator><creator>Richardson, Andrew D.</creator><creator>Russell, Eric S.</creator><creator>Scott, Russell L.</creator><creator>Starr, Gregory</creator><creator>Staebler, Ralf</creator><creator>Stoy, Paul C.</creator><creator>Stuart-Haëntjens, Ellen</creator><creator>Sonnentag, Oliver</creator><creator>Sullivan, Ryan C.</creator><creator>Suyker, Andy</creator><creator>Ueyama, Masahito</creator><creator>Vargas, Rodrigo</creator><creator>Wood, Jeffrey D.</creator><creator>Zona, Donatella</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5226-6041</orcidid><orcidid>https://orcid.org/0000-0002-2111-5144</orcidid><orcidid>https://orcid.org/0000-0001-8661-9178</orcidid><orcidid>https://orcid.org/0000-0001-6422-2882</orcidid><orcidid>https://orcid.org/0000-0003-3496-4919</orcidid><orcidid>https://orcid.org/0000-0002-3500-1842</orcidid><orcidid>https://orcid.org/0000-0002-4000-4888</orcidid><orcidid>https://orcid.org/0000-0002-3697-9439</orcidid><orcidid>https://orcid.org/0000-0002-8962-8982</orcidid><orcidid>https://orcid.org/0000-0002-6919-569X</orcidid><orcidid>https://orcid.org/0000-0002-1433-5173</orcidid><orcidid>https://orcid.org/0000-0002-4460-8283</orcidid><orcidid>https://orcid.org/0000-0001-9901-7643</orcidid><orcidid>https://orcid.org/0000-0002-2397-425X</orcidid><orcidid>https://orcid.org/0000-0001-6829-5333</orcidid><orcidid>https://orcid.org/0000-0002-4583-1559</orcidid><orcidid>https://orcid.org/0000-0002-5397-2802</orcidid><orcidid>https://orcid.org/0000-0002-7226-0640</orcidid><orcidid>https://orcid.org/0000-0002-0148-6714</orcidid><orcidid>https://orcid.org/0000-0002-8131-4938</orcidid><orcidid>https://orcid.org/0000-0002-9209-9540</orcidid><orcidid>https://orcid.org/0000-0003-1996-8639</orcidid><orcidid>https://orcid.org/0000-0002-0159-0546</orcidid><orcidid>https://orcid.org/0000-0001-9572-8325</orcidid><orcidid>https://orcid.org/0000-0002-0003-4839</orcidid><orcidid>https://orcid.org/0000-0002-7550-4874</orcidid><orcidid>https://orcid.org/0000-0002-7405-2220</orcidid><orcidid>https://orcid.org/0000000186619178</orcidid><orcidid>https://orcid.org/0000000334964919</orcidid><orcidid>https://orcid.org/0000000319968639</orcidid><orcidid>https://orcid.org/0000000201486714</orcidid><orcidid>https://orcid.org/0000000164222882</orcidid><orcidid>https://orcid.org/0000000200034839</orcidid><orcidid>https://orcid.org/0000000292099540</orcidid><orcidid>https://orcid.org/0000000247749188</orcidid><orcidid>https://orcid.org/0000000195728325</orcidid><orcidid>https://orcid.org/0000000236979439</orcidid><orcidid>https://orcid.org/0000000272260640</orcidid><orcidid>https://orcid.org/0000000199017643</orcidid><orcidid>https://orcid.org/0000000289628982</orcidid><orcidid>https://orcid.org/0000000252266041</orcidid><orcidid>https://orcid.org/0000000214335173</orcidid><orcidid>https://orcid.org/0000000168295333</orcidid><orcidid>https://orcid.org/0000000253972802</orcidid><orcidid>https://orcid.org/0000000245831559</orcidid><orcidid>https://orcid.org/0000000275504874</orcidid><orcidid>https://orcid.org/0000000244608283</orcidid><orcidid>https://orcid.org/000000026919569X</orcidid><orcidid>https://orcid.org/0000000274052220</orcidid><orcidid>https://orcid.org/0000000235001842</orcidid><orcidid>https://orcid.org/0000000281314938</orcidid><orcidid>https://orcid.org/0000000240004888</orcidid><orcidid>https://orcid.org/000000022397425X</orcidid><orcidid>https://orcid.org/0000000201590546</orcidid><orcidid>https://orcid.org/0000000221115144</orcidid></search><sort><creationdate>20210515</creationdate><title>Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites</title><author>Chu, Housen ; Luo, Xiangzhong ; Ouyang, Zutao ; Chan, W. Stephen ; Dengel, Sigrid ; Biraud, Sébastien C. ; Torn, Margaret S. ; Metzger, Stefan ; Kumar, Jitendra ; Arain, M. Altaf ; Arkebauer, Tim J. ; Baldocchi, Dennis ; Bernacchi, Carl ; Billesbach, Dave ; Black, T. Andrew ; Blanken, Peter D. ; Bohrer, Gil ; Bracho, Rosvel ; Brown, Shannon ; Brunsell, Nathaniel A. ; Chen, Jiquan ; Chen, Xingyuan ; Clark, Kenneth ; Desai, Ankur R. ; Duman, Tomer ; Durden, David ; Fares, Silvano ; Forbrich, Inke ; Gamon, John A. ; Gough, Christopher M. ; Griffis, Timothy ; Helbig, Manuel ; Hollinger, David ; Humphreys, Elyn ; Ikawa, Hiroki ; Iwata, Hiroki ; Ju, Yang ; Knowles, John F. ; Knox, Sara H. ; Kobayashi, Hideki ; Kolb, Thomas ; Law, Beverly ; Lee, Xuhui ; Litvak, Marcy ; Liu, Heping ; Munger, J. William ; Noormets, Asko ; Novick, Kim ; Oberbauer, Steven F. ; Oechel, Walter ; Oikawa, Patty ; Papuga, Shirley A. ; Pendall, Elise ; Prajapati, Prajaya ; Prueger, John ; Quinton, William L ; Richardson, Andrew D. ; Russell, Eric S. ; Scott, Russell L. ; Starr, Gregory ; Staebler, Ralf ; Stoy, Paul C. ; Stuart-Haëntjens, Ellen ; Sonnentag, Oliver ; Sullivan, Ryan C. ; Suyker, Andy ; Ueyama, Masahito ; Vargas, Rodrigo ; Wood, Jeffrey D. ; Zona, Donatella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-6b202a1b6844c34b3f37fc1920a6a1113f8bcd0e1ec2dfad231bc85fbedffcbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ENVIRONMENTAL SCIENCES</topic><topic>Flux footprint</topic><topic>Land cover</topic><topic>Landsat EVI</topic><topic>Model-data benchmarking</topic><topic>Sensor location bias</topic><topic>Spatial representativeness</topic><topic>spatial representatives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Housen</creatorcontrib><creatorcontrib>Luo, Xiangzhong</creatorcontrib><creatorcontrib>Ouyang, Zutao</creatorcontrib><creatorcontrib>Chan, W. Stephen</creatorcontrib><creatorcontrib>Dengel, Sigrid</creatorcontrib><creatorcontrib>Biraud, Sébastien C.</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Metzger, Stefan</creatorcontrib><creatorcontrib>Kumar, Jitendra</creatorcontrib><creatorcontrib>Arain, M. Altaf</creatorcontrib><creatorcontrib>Arkebauer, Tim J.</creatorcontrib><creatorcontrib>Baldocchi, Dennis</creatorcontrib><creatorcontrib>Bernacchi, Carl</creatorcontrib><creatorcontrib>Billesbach, Dave</creatorcontrib><creatorcontrib>Black, T. Andrew</creatorcontrib><creatorcontrib>Blanken, Peter D.</creatorcontrib><creatorcontrib>Bohrer, Gil</creatorcontrib><creatorcontrib>Bracho, Rosvel</creatorcontrib><creatorcontrib>Brown, Shannon</creatorcontrib><creatorcontrib>Brunsell, Nathaniel A.</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Clark, Kenneth</creatorcontrib><creatorcontrib>Desai, Ankur R.</creatorcontrib><creatorcontrib>Duman, Tomer</creatorcontrib><creatorcontrib>Durden, David</creatorcontrib><creatorcontrib>Fares, Silvano</creatorcontrib><creatorcontrib>Forbrich, Inke</creatorcontrib><creatorcontrib>Gamon, John A.</creatorcontrib><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Griffis, Timothy</creatorcontrib><creatorcontrib>Helbig, Manuel</creatorcontrib><creatorcontrib>Hollinger, David</creatorcontrib><creatorcontrib>Humphreys, Elyn</creatorcontrib><creatorcontrib>Ikawa, Hiroki</creatorcontrib><creatorcontrib>Iwata, Hiroki</creatorcontrib><creatorcontrib>Ju, Yang</creatorcontrib><creatorcontrib>Knowles, John F.</creatorcontrib><creatorcontrib>Knox, Sara H.</creatorcontrib><creatorcontrib>Kobayashi, Hideki</creatorcontrib><creatorcontrib>Kolb, Thomas</creatorcontrib><creatorcontrib>Law, Beverly</creatorcontrib><creatorcontrib>Lee, Xuhui</creatorcontrib><creatorcontrib>Litvak, Marcy</creatorcontrib><creatorcontrib>Liu, Heping</creatorcontrib><creatorcontrib>Munger, J. William</creatorcontrib><creatorcontrib>Noormets, Asko</creatorcontrib><creatorcontrib>Novick, Kim</creatorcontrib><creatorcontrib>Oberbauer, Steven F.</creatorcontrib><creatorcontrib>Oechel, Walter</creatorcontrib><creatorcontrib>Oikawa, Patty</creatorcontrib><creatorcontrib>Papuga, Shirley A.</creatorcontrib><creatorcontrib>Pendall, Elise</creatorcontrib><creatorcontrib>Prajapati, Prajaya</creatorcontrib><creatorcontrib>Prueger, John</creatorcontrib><creatorcontrib>Quinton, William L</creatorcontrib><creatorcontrib>Richardson, Andrew D.</creatorcontrib><creatorcontrib>Russell, Eric S.</creatorcontrib><creatorcontrib>Scott, Russell L.</creatorcontrib><creatorcontrib>Starr, Gregory</creatorcontrib><creatorcontrib>Staebler, Ralf</creatorcontrib><creatorcontrib>Stoy, Paul C.</creatorcontrib><creatorcontrib>Stuart-Haëntjens, Ellen</creatorcontrib><creatorcontrib>Sonnentag, Oliver</creatorcontrib><creatorcontrib>Sullivan, Ryan C.</creatorcontrib><creatorcontrib>Suyker, Andy</creatorcontrib><creatorcontrib>Ueyama, Masahito</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><creatorcontrib>Wood, Jeffrey D.</creatorcontrib><creatorcontrib>Zona, Donatella</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Housen</au><au>Luo, Xiangzhong</au><au>Ouyang, Zutao</au><au>Chan, W. Stephen</au><au>Dengel, Sigrid</au><au>Biraud, Sébastien C.</au><au>Torn, Margaret S.</au><au>Metzger, Stefan</au><au>Kumar, Jitendra</au><au>Arain, M. Altaf</au><au>Arkebauer, Tim J.</au><au>Baldocchi, Dennis</au><au>Bernacchi, Carl</au><au>Billesbach, Dave</au><au>Black, T. Andrew</au><au>Blanken, Peter D.</au><au>Bohrer, Gil</au><au>Bracho, Rosvel</au><au>Brown, Shannon</au><au>Brunsell, Nathaniel A.</au><au>Chen, Jiquan</au><au>Chen, Xingyuan</au><au>Clark, Kenneth</au><au>Desai, Ankur R.</au><au>Duman, Tomer</au><au>Durden, David</au><au>Fares, Silvano</au><au>Forbrich, Inke</au><au>Gamon, John A.</au><au>Gough, Christopher M.</au><au>Griffis, Timothy</au><au>Helbig, Manuel</au><au>Hollinger, David</au><au>Humphreys, Elyn</au><au>Ikawa, Hiroki</au><au>Iwata, Hiroki</au><au>Ju, Yang</au><au>Knowles, John F.</au><au>Knox, Sara H.</au><au>Kobayashi, Hideki</au><au>Kolb, Thomas</au><au>Law, Beverly</au><au>Lee, Xuhui</au><au>Litvak, Marcy</au><au>Liu, Heping</au><au>Munger, J. William</au><au>Noormets, Asko</au><au>Novick, Kim</au><au>Oberbauer, Steven F.</au><au>Oechel, Walter</au><au>Oikawa, Patty</au><au>Papuga, Shirley A.</au><au>Pendall, Elise</au><au>Prajapati, Prajaya</au><au>Prueger, John</au><au>Quinton, William L</au><au>Richardson, Andrew D.</au><au>Russell, Eric S.</au><au>Scott, Russell L.</au><au>Starr, Gregory</au><au>Staebler, Ralf</au><au>Stoy, Paul C.</au><au>Stuart-Haëntjens, Ellen</au><au>Sonnentag, Oliver</au><au>Sullivan, Ryan C.</au><au>Suyker, Andy</au><au>Ueyama, Masahito</au><au>Vargas, Rodrigo</au><au>Wood, Jeffrey D.</au><au>Zona, Donatella</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>2021-05-15</date><risdate>2021</risdate><volume>301-302</volume><issue>C</issue><spage>108350</spage><pages>108350-</pages><artnum>108350</artnum><issn>0168-1923</issn><eissn>1873-2240</eissn><abstract>•Large-scale eddy-covariance flux datasets need to be used with footprint-awareness•Using a fixed-extent target area across sites can bias model-data integration•Most sites do not represent the dominant land-cover type at a larger spatial extent•A representativeness index provides general guidance for site selection and data use
Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.agrformet.2021.108350</doi><orcidid>https://orcid.org/0000-0002-5226-6041</orcidid><orcidid>https://orcid.org/0000-0002-2111-5144</orcidid><orcidid>https://orcid.org/0000-0001-8661-9178</orcidid><orcidid>https://orcid.org/0000-0001-6422-2882</orcidid><orcidid>https://orcid.org/0000-0003-3496-4919</orcidid><orcidid>https://orcid.org/0000-0002-3500-1842</orcidid><orcidid>https://orcid.org/0000-0002-4000-4888</orcidid><orcidid>https://orcid.org/0000-0002-3697-9439</orcidid><orcidid>https://orcid.org/0000-0002-8962-8982</orcidid><orcidid>https://orcid.org/0000-0002-6919-569X</orcidid><orcidid>https://orcid.org/0000-0002-1433-5173</orcidid><orcidid>https://orcid.org/0000-0002-4460-8283</orcidid><orcidid>https://orcid.org/0000-0001-9901-7643</orcidid><orcidid>https://orcid.org/0000-0002-2397-425X</orcidid><orcidid>https://orcid.org/0000-0001-6829-5333</orcidid><orcidid>https://orcid.org/0000-0002-4583-1559</orcidid><orcidid>https://orcid.org/0000-0002-5397-2802</orcidid><orcidid>https://orcid.org/0000-0002-7226-0640</orcidid><orcidid>https://orcid.org/0000-0002-0148-6714</orcidid><orcidid>https://orcid.org/0000-0002-8131-4938</orcidid><orcidid>https://orcid.org/0000-0002-9209-9540</orcidid><orcidid>https://orcid.org/0000-0003-1996-8639</orcidid><orcidid>https://orcid.org/0000-0002-0159-0546</orcidid><orcidid>https://orcid.org/0000-0001-9572-8325</orcidid><orcidid>https://orcid.org/0000-0002-0003-4839</orcidid><orcidid>https://orcid.org/0000-0002-7550-4874</orcidid><orcidid>https://orcid.org/0000-0002-7405-2220</orcidid><orcidid>https://orcid.org/0000000186619178</orcidid><orcidid>https://orcid.org/0000000334964919</orcidid><orcidid>https://orcid.org/0000000319968639</orcidid><orcidid>https://orcid.org/0000000201486714</orcidid><orcidid>https://orcid.org/0000000164222882</orcidid><orcidid>https://orcid.org/0000000200034839</orcidid><orcidid>https://orcid.org/0000000292099540</orcidid><orcidid>https://orcid.org/0000000247749188</orcidid><orcidid>https://orcid.org/0000000195728325</orcidid><orcidid>https://orcid.org/0000000236979439</orcidid><orcidid>https://orcid.org/0000000272260640</orcidid><orcidid>https://orcid.org/0000000199017643</orcidid><orcidid>https://orcid.org/0000000289628982</orcidid><orcidid>https://orcid.org/0000000252266041</orcidid><orcidid>https://orcid.org/0000000214335173</orcidid><orcidid>https://orcid.org/0000000168295333</orcidid><orcidid>https://orcid.org/0000000253972802</orcidid><orcidid>https://orcid.org/0000000245831559</orcidid><orcidid>https://orcid.org/0000000275504874</orcidid><orcidid>https://orcid.org/0000000244608283</orcidid><orcidid>https://orcid.org/000000026919569X</orcidid><orcidid>https://orcid.org/0000000274052220</orcidid><orcidid>https://orcid.org/0000000235001842</orcidid><orcidid>https://orcid.org/0000000281314938</orcidid><orcidid>https://orcid.org/0000000240004888</orcidid><orcidid>https://orcid.org/000000022397425X</orcidid><orcidid>https://orcid.org/0000000201590546</orcidid><orcidid>https://orcid.org/0000000221115144</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1923 |
ispartof | Agricultural and forest meteorology, 2021-05, Vol.301-302 (C), p.108350, Article 108350 |
issn | 0168-1923 1873-2240 |
language | eng |
recordid | cdi_osti_scitechconnect_1765897 |
source | Access via ScienceDirect (Elsevier) |
subjects | ENVIRONMENTAL SCIENCES Flux footprint Land cover Landsat EVI Model-data benchmarking Sensor location bias Spatial representativeness spatial representatives |
title | Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representativeness%20of%20Eddy-Covariance%20flux%20footprints%20for%20areas%20surrounding%20AmeriFlux%20sites&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Chu,%20Housen&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2021-05-15&rft.volume=301-302&rft.issue=C&rft.spage=108350&rft.pages=108350-&rft.artnum=108350&rft.issn=0168-1923&rft.eissn=1873-2240&rft_id=info:doi/10.1016/j.agrformet.2021.108350&rft_dat=%3Celsevier_osti_%3ES0168192321000332%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168192321000332&rfr_iscdi=true |