Formulation of 8-moment plasma transport with application to the Nernst effect

8-moment plasma models using two different distribution functions are used to study the Nernst effect and heat transport in dense plasma. These models are presented in hyperbolic form in contrast to traditional parabolic systems derived from perturbing the distribution function, as in Braginskii [Re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2021-02, Vol.28 (2)
Hauptverfasser: Hamilton, Jason, Seyler, Charles E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physics of plasmas
container_volume 28
creator Hamilton, Jason
Seyler, Charles E.
description 8-moment plasma models using two different distribution functions are used to study the Nernst effect and heat transport in dense plasma. These models are presented in hyperbolic form in contrast to traditional parabolic systems derived from perturbing the distribution function, as in Braginskii [Rev. Plasma Phys. 1, 205 (1965)]. The hyperbolic moment formulation can be solved implicitly in time with straightforward and fast local solvers. The numerical implementation of 8-moment models with the relaxation method in the PERSEUS code is also presented. To test 8-moment PERSEUS compared to Braginskii's transport equations, a verification test for the Nernst thermo-magnetic wave by Velikovich et al. [Phys. Plasmas 26, 112702 (2019)] is performed that confirms the presence of the same physics, but with slight differences in the transport coefficients, which are tabulated in the limits of high and low magnetization.
doi_str_mv 10.1063/5.0030117
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1765396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488026281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-a2cf769592a71aee56f0b2052b0ff8909fe2ba33d0e194fa245a1f9cc7b0f56d3</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTcIelLYOsluks1RilWh1IuCt5CmCd2ym6xJivj2bt2ePc0cPmZ-foSuCcwI8PKBzQBKIEScoAmBWhaCi-r0sAsoOK8-z9FFSjsAqDirJ2i1CLHbtzo3wePgcF10obM-477VqdM4R-1TH2LG303eYt33bWNGnQPOW4tXNvqUsXXOmnyJzpxuk706zin6WDy9z1-K5dvz6_xxWZiSVbnQ1DjBJZNUC6KtZdzBmgKja3CuliCdpWtdlhuwRFZO04pp4qQxYgCMb8opuhnvhpQblUyTrdma4P2QQRHBWSn5gG5H1Mfwtbcpq13YRz_kUrSqa6Cc1mRQd6MyMaQUrVN9bDodfxQBdehUMXXsdLD3oz18_GvhH_wLd391vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488026281</pqid></control><display><type>article</type><title>Formulation of 8-moment plasma transport with application to the Nernst effect</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hamilton, Jason ; Seyler, Charles E.</creator><creatorcontrib>Hamilton, Jason ; Seyler, Charles E.</creatorcontrib><description>8-moment plasma models using two different distribution functions are used to study the Nernst effect and heat transport in dense plasma. These models are presented in hyperbolic form in contrast to traditional parabolic systems derived from perturbing the distribution function, as in Braginskii [Rev. Plasma Phys. 1, 205 (1965)]. The hyperbolic moment formulation can be solved implicitly in time with straightforward and fast local solvers. The numerical implementation of 8-moment models with the relaxation method in the PERSEUS code is also presented. To test 8-moment PERSEUS compared to Braginskii's transport equations, a verification test for the Nernst thermo-magnetic wave by Velikovich et al. [Phys. Plasmas 26, 112702 (2019)] is performed that confirms the presence of the same physics, but with slight differences in the transport coefficients, which are tabulated in the limits of high and low magnetization.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0030117</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dense plasmas ; Distribution functions ; Nernst-Ettingshausen effect ; Plasma ; Plasma physics ; Relaxation method (mathematics) ; Transport equations ; Transport properties</subject><ispartof>Physics of plasmas, 2021-02, Vol.28 (2)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-a2cf769592a71aee56f0b2052b0ff8909fe2ba33d0e194fa245a1f9cc7b0f56d3</citedby><cites>FETCH-LOGICAL-c354t-a2cf769592a71aee56f0b2052b0ff8909fe2ba33d0e194fa245a1f9cc7b0f56d3</cites><orcidid>0000-0003-1289-8180 ; 0000-0003-0505-0771 ; 0000000312898180 ; 0000000305050771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0030117$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4511,27923,27924,76255</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1765396$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamilton, Jason</creatorcontrib><creatorcontrib>Seyler, Charles E.</creatorcontrib><title>Formulation of 8-moment plasma transport with application to the Nernst effect</title><title>Physics of plasmas</title><description>8-moment plasma models using two different distribution functions are used to study the Nernst effect and heat transport in dense plasma. These models are presented in hyperbolic form in contrast to traditional parabolic systems derived from perturbing the distribution function, as in Braginskii [Rev. Plasma Phys. 1, 205 (1965)]. The hyperbolic moment formulation can be solved implicitly in time with straightforward and fast local solvers. The numerical implementation of 8-moment models with the relaxation method in the PERSEUS code is also presented. To test 8-moment PERSEUS compared to Braginskii's transport equations, a verification test for the Nernst thermo-magnetic wave by Velikovich et al. [Phys. Plasmas 26, 112702 (2019)] is performed that confirms the presence of the same physics, but with slight differences in the transport coefficients, which are tabulated in the limits of high and low magnetization.</description><subject>Dense plasmas</subject><subject>Distribution functions</subject><subject>Nernst-Ettingshausen effect</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Relaxation method (mathematics)</subject><subject>Transport equations</subject><subject>Transport properties</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTcIelLYOsluks1RilWh1IuCt5CmCd2ym6xJivj2bt2ePc0cPmZ-foSuCcwI8PKBzQBKIEScoAmBWhaCi-r0sAsoOK8-z9FFSjsAqDirJ2i1CLHbtzo3wePgcF10obM-477VqdM4R-1TH2LG303eYt33bWNGnQPOW4tXNvqUsXXOmnyJzpxuk706zin6WDy9z1-K5dvz6_xxWZiSVbnQ1DjBJZNUC6KtZdzBmgKja3CuliCdpWtdlhuwRFZO04pp4qQxYgCMb8opuhnvhpQblUyTrdma4P2QQRHBWSn5gG5H1Mfwtbcpq13YRz_kUrSqa6Cc1mRQd6MyMaQUrVN9bDodfxQBdehUMXXsdLD3oz18_GvhH_wLd391vA</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Hamilton, Jason</creator><creator>Seyler, Charles E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1289-8180</orcidid><orcidid>https://orcid.org/0000-0003-0505-0771</orcidid><orcidid>https://orcid.org/0000000312898180</orcidid><orcidid>https://orcid.org/0000000305050771</orcidid></search><sort><creationdate>202102</creationdate><title>Formulation of 8-moment plasma transport with application to the Nernst effect</title><author>Hamilton, Jason ; Seyler, Charles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-a2cf769592a71aee56f0b2052b0ff8909fe2ba33d0e194fa245a1f9cc7b0f56d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dense plasmas</topic><topic>Distribution functions</topic><topic>Nernst-Ettingshausen effect</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Relaxation method (mathematics)</topic><topic>Transport equations</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, Jason</creatorcontrib><creatorcontrib>Seyler, Charles E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, Jason</au><au>Seyler, Charles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of 8-moment plasma transport with application to the Nernst effect</atitle><jtitle>Physics of plasmas</jtitle><date>2021-02</date><risdate>2021</risdate><volume>28</volume><issue>2</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>8-moment plasma models using two different distribution functions are used to study the Nernst effect and heat transport in dense plasma. These models are presented in hyperbolic form in contrast to traditional parabolic systems derived from perturbing the distribution function, as in Braginskii [Rev. Plasma Phys. 1, 205 (1965)]. The hyperbolic moment formulation can be solved implicitly in time with straightforward and fast local solvers. The numerical implementation of 8-moment models with the relaxation method in the PERSEUS code is also presented. To test 8-moment PERSEUS compared to Braginskii's transport equations, a verification test for the Nernst thermo-magnetic wave by Velikovich et al. [Phys. Plasmas 26, 112702 (2019)] is performed that confirms the presence of the same physics, but with slight differences in the transport coefficients, which are tabulated in the limits of high and low magnetization.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0030117</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1289-8180</orcidid><orcidid>https://orcid.org/0000-0003-0505-0771</orcidid><orcidid>https://orcid.org/0000000312898180</orcidid><orcidid>https://orcid.org/0000000305050771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2021-02, Vol.28 (2)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1765396
source AIP Journals Complete; Alma/SFX Local Collection
subjects Dense plasmas
Distribution functions
Nernst-Ettingshausen effect
Plasma
Plasma physics
Relaxation method (mathematics)
Transport equations
Transport properties
title Formulation of 8-moment plasma transport with application to the Nernst effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%208-moment%20plasma%20transport%20with%20application%20to%20the%20Nernst%20effect&rft.jtitle=Physics%20of%20plasmas&rft.au=Hamilton,%20Jason&rft.date=2021-02&rft.volume=28&rft.issue=2&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0030117&rft_dat=%3Cproquest_osti_%3E2488026281%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488026281&rft_id=info:pmid/&rfr_iscdi=true