Giant nonlinear optical responses from photon-avalanching nanoparticles

Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials 1 . Photon avalanching enables technologies such as optical phase-conjugate imaging 2 , infrared quantum counting 3 and eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-01, Vol.589 (7841), p.230-235
Hauptverfasser: Lee, Changhwan, Xu, Emma Z., Liu, Yawei, Teitelboim, Ayelet, Yao, Kaiyuan, Fernandez-Bravo, Angel, Kotulska, Agata M., Nam, Sang Hwan, Suh, Yung Doug, Bednarkiewicz, Artur, Cohen, Bruce E., Chan, Emory M., Schuck, P. James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 7841
container_start_page 230
container_title Nature (London)
container_volume 589
creator Lee, Changhwan
Xu, Emma Z.
Liu, Yawei
Teitelboim, Ayelet
Yao, Kaiyuan
Fernandez-Bravo, Angel
Kotulska, Agata M.
Nam, Sang Hwan
Suh, Yung Doug
Bednarkiewicz, Artur
Cohen, Bruce E.
Chan, Emory M.
Schuck, P. James
description Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials 1 . Photon avalanching enables technologies such as optical phase-conjugate imaging 2 , infrared quantum counting 3 and efficient upconverted lasing 4 – 6 . However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates 6 , 7 , limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures—small, Tm 3+ -doped upconverting nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging 7 with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods 8 – 10 , ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging 7 , 11 , 12 and optical and environmental sensing 13 – 15 . Room-temperature photon avalanching realized in single thulium-doped upconverting nanocrystals enables super-resolution imaging at near-infrared wavelengths of maximal biological transparency and provides a material platform potentially suitable for other optical technologies.
doi_str_mv 10.1038/s41586-020-03092-9
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1764563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650181131</galeid><sourcerecordid>A650181131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c648t-10dac20e0e6346d2d395b2ac3907b62f14a54987cff612abf2eb9a7dd77f56d33</originalsourceid><addsrcrecordid>eNp90l1rFDEUBuAgil2rf8ALGeqVSGq-JplcLouuhaKgFS9DJpOZTZlJpklW9N-bOlW7sEouAslzDofkBeA5RucY0eZNYrhuOEQEQUSRJFA-ACvMBIeMN-IhWCFEGogayk_Ak5SuEUI1FuwxOKGUMYIYWYHt1mmfKx_86LzVsQpzdkaPVbRpDj7ZVPUxTNW8Czl4qL_pUXuzc36ovPZh1rHw0aan4FGvx2Sf3e2n4Mu7t1eb9_Dy4_Zis76EhrMmQ4w6bQiyyHLKeEc6KuuWaEMlEi0nPWa6ZrIRpu85JrrtiW2lFl0nRF_zjtJTcLb0DSk7lYzL1uxM8N6arLDgrOa36OWC5hhu9jZldR320Ze5FGFCIi5reU8NerTK-T7kqM3kklFrXiPcYExxUfCIGqy3UY_B296V4wN_dsSb2d2o--j8CCqrs5MzR7u-OigoJtvvedD7lNTF50-H9vW_7frq6-bDoSaLNjGkFG2v5ugmHX8ojNRtzNQSM1Vipn7FTMlS9OLugfftZLs_Jb9zVQBdQCpXfrDx7w_8p-1Pc4HX2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479069593</pqid></control><display><type>article</type><title>Giant nonlinear optical responses from photon-avalanching nanoparticles</title><source>Springer Nature - Complete Springer Journals</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Lee, Changhwan ; Xu, Emma Z. ; Liu, Yawei ; Teitelboim, Ayelet ; Yao, Kaiyuan ; Fernandez-Bravo, Angel ; Kotulska, Agata M. ; Nam, Sang Hwan ; Suh, Yung Doug ; Bednarkiewicz, Artur ; Cohen, Bruce E. ; Chan, Emory M. ; Schuck, P. James</creator><creatorcontrib>Lee, Changhwan ; Xu, Emma Z. ; Liu, Yawei ; Teitelboim, Ayelet ; Yao, Kaiyuan ; Fernandez-Bravo, Angel ; Kotulska, Agata M. ; Nam, Sang Hwan ; Suh, Yung Doug ; Bednarkiewicz, Artur ; Cohen, Bruce E. ; Chan, Emory M. ; Schuck, P. James ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><description>Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials 1 . Photon avalanching enables technologies such as optical phase-conjugate imaging 2 , infrared quantum counting 3 and efficient upconverted lasing 4 – 6 . However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates 6 , 7 , limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures—small, Tm 3+ -doped upconverting nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging 7 with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods 8 – 10 , ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging 7 , 11 , 12 and optical and environmental sensing 13 – 15 . Room-temperature photon avalanching realized in single thulium-doped upconverting nanocrystals enables super-resolution imaging at near-infrared wavelengths of maximal biological transparency and provides a material platform potentially suitable for other optical technologies.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-03092-9</identifier><identifier>PMID: 33442042</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/357 ; 639/624/399 ; 639/925/357/354 ; Absorption ; Atomic properties ; Cross relaxation ; Decay rate ; Design specifications ; Emission ; Emissions ; Energy ; Excitation ; Glass substrates ; Humanities and Social Sciences ; Infrared windows ; MATERIALS SCIENCE ; Mechanical properties ; multidisciplinary ; Nanocrystals ; Nanomaterials ; Nanoparticles ; nanoscale materials ; Nonlinear optics ; Nonlinear systems ; Nonlinearity ; Observations ; optical materials and structures ; Phase transitions ; Photons ; Science ; Science (multidisciplinary) ; Thulium ; Wavelengths ; Ytterbium</subject><ispartof>Nature (London), 2021-01, Vol.589 (7841), p.230-235</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 14, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c648t-10dac20e0e6346d2d395b2ac3907b62f14a54987cff612abf2eb9a7dd77f56d33</citedby><cites>FETCH-LOGICAL-c648t-10dac20e0e6346d2d395b2ac3907b62f14a54987cff612abf2eb9a7dd77f56d33</cites><orcidid>0000-0003-3655-3638 ; 0000-0001-5032-3631 ; 0000-0001-6335-9537 ; 0000-0003-2352-693X ; 0000-0002-5655-0146 ; 0000-0001-9244-2671 ; 0000-0003-4113-0365 ; 0000000163359537 ; 0000000336553638 ; 0000000192442671 ; 0000000150323631 ; 000000032352693X ; 0000000341130365 ; 0000000256550146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-03092-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-03092-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33442042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1764563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Changhwan</creatorcontrib><creatorcontrib>Xu, Emma Z.</creatorcontrib><creatorcontrib>Liu, Yawei</creatorcontrib><creatorcontrib>Teitelboim, Ayelet</creatorcontrib><creatorcontrib>Yao, Kaiyuan</creatorcontrib><creatorcontrib>Fernandez-Bravo, Angel</creatorcontrib><creatorcontrib>Kotulska, Agata M.</creatorcontrib><creatorcontrib>Nam, Sang Hwan</creatorcontrib><creatorcontrib>Suh, Yung Doug</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Cohen, Bruce E.</creatorcontrib><creatorcontrib>Chan, Emory M.</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><title>Giant nonlinear optical responses from photon-avalanching nanoparticles</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials 1 . Photon avalanching enables technologies such as optical phase-conjugate imaging 2 , infrared quantum counting 3 and efficient upconverted lasing 4 – 6 . However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates 6 , 7 , limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures—small, Tm 3+ -doped upconverting nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging 7 with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods 8 – 10 , ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging 7 , 11 , 12 and optical and environmental sensing 13 – 15 . Room-temperature photon avalanching realized in single thulium-doped upconverting nanocrystals enables super-resolution imaging at near-infrared wavelengths of maximal biological transparency and provides a material platform potentially suitable for other optical technologies.</description><subject>140/125</subject><subject>639/301/357</subject><subject>639/624/399</subject><subject>639/925/357/354</subject><subject>Absorption</subject><subject>Atomic properties</subject><subject>Cross relaxation</subject><subject>Decay rate</subject><subject>Design specifications</subject><subject>Emission</subject><subject>Emissions</subject><subject>Energy</subject><subject>Excitation</subject><subject>Glass substrates</subject><subject>Humanities and Social Sciences</subject><subject>Infrared windows</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>nanoscale materials</subject><subject>Nonlinear optics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Observations</subject><subject>optical materials and structures</subject><subject>Phase transitions</subject><subject>Photons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thulium</subject><subject>Wavelengths</subject><subject>Ytterbium</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90l1rFDEUBuAgil2rf8ALGeqVSGq-JplcLouuhaKgFS9DJpOZTZlJpklW9N-bOlW7sEouAslzDofkBeA5RucY0eZNYrhuOEQEQUSRJFA-ACvMBIeMN-IhWCFEGogayk_Ak5SuEUI1FuwxOKGUMYIYWYHt1mmfKx_86LzVsQpzdkaPVbRpDj7ZVPUxTNW8Czl4qL_pUXuzc36ovPZh1rHw0aan4FGvx2Sf3e2n4Mu7t1eb9_Dy4_Zis76EhrMmQ4w6bQiyyHLKeEc6KuuWaEMlEi0nPWa6ZrIRpu85JrrtiW2lFl0nRF_zjtJTcLb0DSk7lYzL1uxM8N6arLDgrOa36OWC5hhu9jZldR320Ze5FGFCIi5reU8NerTK-T7kqM3kklFrXiPcYExxUfCIGqy3UY_B296V4wN_dsSb2d2o--j8CCqrs5MzR7u-OigoJtvvedD7lNTF50-H9vW_7frq6-bDoSaLNjGkFG2v5ugmHX8ojNRtzNQSM1Vipn7FTMlS9OLugfftZLs_Jb9zVQBdQCpXfrDx7w_8p-1Pc4HX2A</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Lee, Changhwan</creator><creator>Xu, Emma Z.</creator><creator>Liu, Yawei</creator><creator>Teitelboim, Ayelet</creator><creator>Yao, Kaiyuan</creator><creator>Fernandez-Bravo, Angel</creator><creator>Kotulska, Agata M.</creator><creator>Nam, Sang Hwan</creator><creator>Suh, Yung Doug</creator><creator>Bednarkiewicz, Artur</creator><creator>Cohen, Bruce E.</creator><creator>Chan, Emory M.</creator><creator>Schuck, P. James</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3655-3638</orcidid><orcidid>https://orcid.org/0000-0001-5032-3631</orcidid><orcidid>https://orcid.org/0000-0001-6335-9537</orcidid><orcidid>https://orcid.org/0000-0003-2352-693X</orcidid><orcidid>https://orcid.org/0000-0002-5655-0146</orcidid><orcidid>https://orcid.org/0000-0001-9244-2671</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000000163359537</orcidid><orcidid>https://orcid.org/0000000336553638</orcidid><orcidid>https://orcid.org/0000000192442671</orcidid><orcidid>https://orcid.org/0000000150323631</orcidid><orcidid>https://orcid.org/000000032352693X</orcidid><orcidid>https://orcid.org/0000000341130365</orcidid><orcidid>https://orcid.org/0000000256550146</orcidid></search><sort><creationdate>20210114</creationdate><title>Giant nonlinear optical responses from photon-avalanching nanoparticles</title><author>Lee, Changhwan ; Xu, Emma Z. ; Liu, Yawei ; Teitelboim, Ayelet ; Yao, Kaiyuan ; Fernandez-Bravo, Angel ; Kotulska, Agata M. ; Nam, Sang Hwan ; Suh, Yung Doug ; Bednarkiewicz, Artur ; Cohen, Bruce E. ; Chan, Emory M. ; Schuck, P. James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c648t-10dac20e0e6346d2d395b2ac3907b62f14a54987cff612abf2eb9a7dd77f56d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/125</topic><topic>639/301/357</topic><topic>639/624/399</topic><topic>639/925/357/354</topic><topic>Absorption</topic><topic>Atomic properties</topic><topic>Cross relaxation</topic><topic>Decay rate</topic><topic>Design specifications</topic><topic>Emission</topic><topic>Emissions</topic><topic>Energy</topic><topic>Excitation</topic><topic>Glass substrates</topic><topic>Humanities and Social Sciences</topic><topic>Infrared windows</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>nanoscale materials</topic><topic>Nonlinear optics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Observations</topic><topic>optical materials and structures</topic><topic>Phase transitions</topic><topic>Photons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thulium</topic><topic>Wavelengths</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Changhwan</creatorcontrib><creatorcontrib>Xu, Emma Z.</creatorcontrib><creatorcontrib>Liu, Yawei</creatorcontrib><creatorcontrib>Teitelboim, Ayelet</creatorcontrib><creatorcontrib>Yao, Kaiyuan</creatorcontrib><creatorcontrib>Fernandez-Bravo, Angel</creatorcontrib><creatorcontrib>Kotulska, Agata M.</creatorcontrib><creatorcontrib>Nam, Sang Hwan</creatorcontrib><creatorcontrib>Suh, Yung Doug</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Cohen, Bruce E.</creatorcontrib><creatorcontrib>Chan, Emory M.</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Changhwan</au><au>Xu, Emma Z.</au><au>Liu, Yawei</au><au>Teitelboim, Ayelet</au><au>Yao, Kaiyuan</au><au>Fernandez-Bravo, Angel</au><au>Kotulska, Agata M.</au><au>Nam, Sang Hwan</au><au>Suh, Yung Doug</au><au>Bednarkiewicz, Artur</au><au>Cohen, Bruce E.</au><au>Chan, Emory M.</au><au>Schuck, P. James</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant nonlinear optical responses from photon-avalanching nanoparticles</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>589</volume><issue>7841</issue><spage>230</spage><epage>235</epage><pages>230-235</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials 1 . Photon avalanching enables technologies such as optical phase-conjugate imaging 2 , infrared quantum counting 3 and efficient upconverted lasing 4 – 6 . However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates 6 , 7 , limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures—small, Tm 3+ -doped upconverting nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging 7 with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods 8 – 10 , ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging 7 , 11 , 12 and optical and environmental sensing 13 – 15 . Room-temperature photon avalanching realized in single thulium-doped upconverting nanocrystals enables super-resolution imaging at near-infrared wavelengths of maximal biological transparency and provides a material platform potentially suitable for other optical technologies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33442042</pmid><doi>10.1038/s41586-020-03092-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3655-3638</orcidid><orcidid>https://orcid.org/0000-0001-5032-3631</orcidid><orcidid>https://orcid.org/0000-0001-6335-9537</orcidid><orcidid>https://orcid.org/0000-0003-2352-693X</orcidid><orcidid>https://orcid.org/0000-0002-5655-0146</orcidid><orcidid>https://orcid.org/0000-0001-9244-2671</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000000163359537</orcidid><orcidid>https://orcid.org/0000000336553638</orcidid><orcidid>https://orcid.org/0000000192442671</orcidid><orcidid>https://orcid.org/0000000150323631</orcidid><orcidid>https://orcid.org/000000032352693X</orcidid><orcidid>https://orcid.org/0000000341130365</orcidid><orcidid>https://orcid.org/0000000256550146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-01, Vol.589 (7841), p.230-235
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1764563
source Springer Nature - Complete Springer Journals; Springer Nature - Connect here FIRST to enable access
subjects 140/125
639/301/357
639/624/399
639/925/357/354
Absorption
Atomic properties
Cross relaxation
Decay rate
Design specifications
Emission
Emissions
Energy
Excitation
Glass substrates
Humanities and Social Sciences
Infrared windows
MATERIALS SCIENCE
Mechanical properties
multidisciplinary
Nanocrystals
Nanomaterials
Nanoparticles
nanoscale materials
Nonlinear optics
Nonlinear systems
Nonlinearity
Observations
optical materials and structures
Phase transitions
Photons
Science
Science (multidisciplinary)
Thulium
Wavelengths
Ytterbium
title Giant nonlinear optical responses from photon-avalanching nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20nonlinear%20optical%20responses%20from%20photon-avalanching%20nanoparticles&rft.jtitle=Nature%20(London)&rft.au=Lee,%20Changhwan&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Molecular%20Foundry&rft.date=2021-01-14&rft.volume=589&rft.issue=7841&rft.spage=230&rft.epage=235&rft.pages=230-235&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-03092-9&rft_dat=%3Cgale_osti_%3EA650181131%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479069593&rft_id=info:pmid/33442042&rft_galeid=A650181131&rfr_iscdi=true