Giant nonlinear optical responses from photon-avalanching nanoparticles
Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials 1 . Photon avalanching enables technologies such as optical phase-conjugate imaging 2 , infrared quantum counting 3 and eff...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-01, Vol.589 (7841), p.230-235 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 7841 |
container_start_page | 230 |
container_title | Nature (London) |
container_volume | 589 |
creator | Lee, Changhwan Xu, Emma Z. Liu, Yawei Teitelboim, Ayelet Yao, Kaiyuan Fernandez-Bravo, Angel Kotulska, Agata M. Nam, Sang Hwan Suh, Yung Doug Bednarkiewicz, Artur Cohen, Bruce E. Chan, Emory M. Schuck, P. James |
description | Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials
1
. Photon avalanching enables technologies such as optical phase-conjugate imaging
2
, infrared quantum counting
3
and efficient upconverted lasing
4
–
6
. However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates
6
,
7
, limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures—small, Tm
3+
-doped upconverting nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging
7
with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods
8
–
10
, ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging
7
,
11
,
12
and optical and environmental sensing
13
–
15
.
Room-temperature photon avalanching realized in single thulium-doped upconverting nanocrystals enables super-resolution imaging at near-infrared wavelengths of maximal biological transparency and provides a material platform potentially suitable for other optical technologies. |
doi_str_mv | 10.1038/s41586-020-03092-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1764563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650181131</galeid><sourcerecordid>A650181131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c648t-10dac20e0e6346d2d395b2ac3907b62f14a54987cff612abf2eb9a7dd77f56d33</originalsourceid><addsrcrecordid>eNp90l1rFDEUBuAgil2rf8ALGeqVSGq-JplcLouuhaKgFS9DJpOZTZlJpklW9N-bOlW7sEouAslzDofkBeA5RucY0eZNYrhuOEQEQUSRJFA-ACvMBIeMN-IhWCFEGogayk_Ak5SuEUI1FuwxOKGUMYIYWYHt1mmfKx_86LzVsQpzdkaPVbRpDj7ZVPUxTNW8Czl4qL_pUXuzc36ovPZh1rHw0aan4FGvx2Sf3e2n4Mu7t1eb9_Dy4_Zis76EhrMmQ4w6bQiyyHLKeEc6KuuWaEMlEi0nPWa6ZrIRpu85JrrtiW2lFl0nRF_zjtJTcLb0DSk7lYzL1uxM8N6arLDgrOa36OWC5hhu9jZldR320Ze5FGFCIi5reU8NerTK-T7kqM3kklFrXiPcYExxUfCIGqy3UY_B296V4wN_dsSb2d2o--j8CCqrs5MzR7u-OigoJtvvedD7lNTF50-H9vW_7frq6-bDoSaLNjGkFG2v5ugmHX8ojNRtzNQSM1Vipn7FTMlS9OLugfftZLs_Jb9zVQBdQCpXfrDx7w_8p-1Pc4HX2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479069593</pqid></control><display><type>article</type><title>Giant nonlinear optical responses from photon-avalanching nanoparticles</title><source>Springer Nature - Complete Springer Journals</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Lee, Changhwan ; Xu, Emma Z. ; Liu, Yawei ; Teitelboim, Ayelet ; Yao, Kaiyuan ; Fernandez-Bravo, Angel ; Kotulska, Agata M. ; Nam, Sang Hwan ; Suh, Yung Doug ; Bednarkiewicz, Artur ; Cohen, Bruce E. ; Chan, Emory M. ; Schuck, P. James</creator><creatorcontrib>Lee, Changhwan ; Xu, Emma Z. ; Liu, Yawei ; Teitelboim, Ayelet ; Yao, Kaiyuan ; Fernandez-Bravo, Angel ; Kotulska, Agata M. ; Nam, Sang Hwan ; Suh, Yung Doug ; Bednarkiewicz, Artur ; Cohen, Bruce E. ; Chan, Emory M. ; Schuck, P. James ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><description>Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials
1
. Photon avalanching enables technologies such as optical phase-conjugate imaging
2
, infrared quantum counting
3
and efficient upconverted lasing
4
–
6
. However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates
6
,
7
, limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures—small, Tm
3+
-doped upconverting nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging
7
with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods
8
–
10
, ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging
7
,
11
,
12
and optical and environmental sensing
13
–
15
.
Room-temperature photon avalanching realized in single thulium-doped upconverting nanocrystals enables super-resolution imaging at near-infrared wavelengths of maximal biological transparency and provides a material platform potentially suitable for other optical technologies.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-03092-9</identifier><identifier>PMID: 33442042</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/357 ; 639/624/399 ; 639/925/357/354 ; Absorption ; Atomic properties ; Cross relaxation ; Decay rate ; Design specifications ; Emission ; Emissions ; Energy ; Excitation ; Glass substrates ; Humanities and Social Sciences ; Infrared windows ; MATERIALS SCIENCE ; Mechanical properties ; multidisciplinary ; Nanocrystals ; Nanomaterials ; Nanoparticles ; nanoscale materials ; Nonlinear optics ; Nonlinear systems ; Nonlinearity ; Observations ; optical materials and structures ; Phase transitions ; Photons ; Science ; Science (multidisciplinary) ; Thulium ; Wavelengths ; Ytterbium</subject><ispartof>Nature (London), 2021-01, Vol.589 (7841), p.230-235</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 14, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c648t-10dac20e0e6346d2d395b2ac3907b62f14a54987cff612abf2eb9a7dd77f56d33</citedby><cites>FETCH-LOGICAL-c648t-10dac20e0e6346d2d395b2ac3907b62f14a54987cff612abf2eb9a7dd77f56d33</cites><orcidid>0000-0003-3655-3638 ; 0000-0001-5032-3631 ; 0000-0001-6335-9537 ; 0000-0003-2352-693X ; 0000-0002-5655-0146 ; 0000-0001-9244-2671 ; 0000-0003-4113-0365 ; 0000000163359537 ; 0000000336553638 ; 0000000192442671 ; 0000000150323631 ; 000000032352693X ; 0000000341130365 ; 0000000256550146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-03092-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-03092-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33442042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1764563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Changhwan</creatorcontrib><creatorcontrib>Xu, Emma Z.</creatorcontrib><creatorcontrib>Liu, Yawei</creatorcontrib><creatorcontrib>Teitelboim, Ayelet</creatorcontrib><creatorcontrib>Yao, Kaiyuan</creatorcontrib><creatorcontrib>Fernandez-Bravo, Angel</creatorcontrib><creatorcontrib>Kotulska, Agata M.</creatorcontrib><creatorcontrib>Nam, Sang Hwan</creatorcontrib><creatorcontrib>Suh, Yung Doug</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Cohen, Bruce E.</creatorcontrib><creatorcontrib>Chan, Emory M.</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><title>Giant nonlinear optical responses from photon-avalanching nanoparticles</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials
1
. Photon avalanching enables technologies such as optical phase-conjugate imaging
2
, infrared quantum counting
3
and efficient upconverted lasing
4
–
6
. However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates
6
,
7
, limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures—small, Tm
3+
-doped upconverting nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging
7
with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods
8
–
10
, ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging
7
,
11
,
12
and optical and environmental sensing
13
–
15
.
Room-temperature photon avalanching realized in single thulium-doped upconverting nanocrystals enables super-resolution imaging at near-infrared wavelengths of maximal biological transparency and provides a material platform potentially suitable for other optical technologies.</description><subject>140/125</subject><subject>639/301/357</subject><subject>639/624/399</subject><subject>639/925/357/354</subject><subject>Absorption</subject><subject>Atomic properties</subject><subject>Cross relaxation</subject><subject>Decay rate</subject><subject>Design specifications</subject><subject>Emission</subject><subject>Emissions</subject><subject>Energy</subject><subject>Excitation</subject><subject>Glass substrates</subject><subject>Humanities and Social Sciences</subject><subject>Infrared windows</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>nanoscale materials</subject><subject>Nonlinear optics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Observations</subject><subject>optical materials and structures</subject><subject>Phase transitions</subject><subject>Photons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thulium</subject><subject>Wavelengths</subject><subject>Ytterbium</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90l1rFDEUBuAgil2rf8ALGeqVSGq-JplcLouuhaKgFS9DJpOZTZlJpklW9N-bOlW7sEouAslzDofkBeA5RucY0eZNYrhuOEQEQUSRJFA-ACvMBIeMN-IhWCFEGogayk_Ak5SuEUI1FuwxOKGUMYIYWYHt1mmfKx_86LzVsQpzdkaPVbRpDj7ZVPUxTNW8Czl4qL_pUXuzc36ovPZh1rHw0aan4FGvx2Sf3e2n4Mu7t1eb9_Dy4_Zis76EhrMmQ4w6bQiyyHLKeEc6KuuWaEMlEi0nPWa6ZrIRpu85JrrtiW2lFl0nRF_zjtJTcLb0DSk7lYzL1uxM8N6arLDgrOa36OWC5hhu9jZldR320Ze5FGFCIi5reU8NerTK-T7kqM3kklFrXiPcYExxUfCIGqy3UY_B296V4wN_dsSb2d2o--j8CCqrs5MzR7u-OigoJtvvedD7lNTF50-H9vW_7frq6-bDoSaLNjGkFG2v5ugmHX8ojNRtzNQSM1Vipn7FTMlS9OLugfftZLs_Jb9zVQBdQCpXfrDx7w_8p-1Pc4HX2A</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Lee, Changhwan</creator><creator>Xu, Emma Z.</creator><creator>Liu, Yawei</creator><creator>Teitelboim, Ayelet</creator><creator>Yao, Kaiyuan</creator><creator>Fernandez-Bravo, Angel</creator><creator>Kotulska, Agata M.</creator><creator>Nam, Sang Hwan</creator><creator>Suh, Yung Doug</creator><creator>Bednarkiewicz, Artur</creator><creator>Cohen, Bruce E.</creator><creator>Chan, Emory M.</creator><creator>Schuck, P. James</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3655-3638</orcidid><orcidid>https://orcid.org/0000-0001-5032-3631</orcidid><orcidid>https://orcid.org/0000-0001-6335-9537</orcidid><orcidid>https://orcid.org/0000-0003-2352-693X</orcidid><orcidid>https://orcid.org/0000-0002-5655-0146</orcidid><orcidid>https://orcid.org/0000-0001-9244-2671</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000000163359537</orcidid><orcidid>https://orcid.org/0000000336553638</orcidid><orcidid>https://orcid.org/0000000192442671</orcidid><orcidid>https://orcid.org/0000000150323631</orcidid><orcidid>https://orcid.org/000000032352693X</orcidid><orcidid>https://orcid.org/0000000341130365</orcidid><orcidid>https://orcid.org/0000000256550146</orcidid></search><sort><creationdate>20210114</creationdate><title>Giant nonlinear optical responses from photon-avalanching nanoparticles</title><author>Lee, Changhwan ; Xu, Emma Z. ; Liu, Yawei ; Teitelboim, Ayelet ; Yao, Kaiyuan ; Fernandez-Bravo, Angel ; Kotulska, Agata M. ; Nam, Sang Hwan ; Suh, Yung Doug ; Bednarkiewicz, Artur ; Cohen, Bruce E. ; Chan, Emory M. ; Schuck, P. James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c648t-10dac20e0e6346d2d395b2ac3907b62f14a54987cff612abf2eb9a7dd77f56d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/125</topic><topic>639/301/357</topic><topic>639/624/399</topic><topic>639/925/357/354</topic><topic>Absorption</topic><topic>Atomic properties</topic><topic>Cross relaxation</topic><topic>Decay rate</topic><topic>Design specifications</topic><topic>Emission</topic><topic>Emissions</topic><topic>Energy</topic><topic>Excitation</topic><topic>Glass substrates</topic><topic>Humanities and Social Sciences</topic><topic>Infrared windows</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>nanoscale materials</topic><topic>Nonlinear optics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Observations</topic><topic>optical materials and structures</topic><topic>Phase transitions</topic><topic>Photons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thulium</topic><topic>Wavelengths</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Changhwan</creatorcontrib><creatorcontrib>Xu, Emma Z.</creatorcontrib><creatorcontrib>Liu, Yawei</creatorcontrib><creatorcontrib>Teitelboim, Ayelet</creatorcontrib><creatorcontrib>Yao, Kaiyuan</creatorcontrib><creatorcontrib>Fernandez-Bravo, Angel</creatorcontrib><creatorcontrib>Kotulska, Agata M.</creatorcontrib><creatorcontrib>Nam, Sang Hwan</creatorcontrib><creatorcontrib>Suh, Yung Doug</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><creatorcontrib>Cohen, Bruce E.</creatorcontrib><creatorcontrib>Chan, Emory M.</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Changhwan</au><au>Xu, Emma Z.</au><au>Liu, Yawei</au><au>Teitelboim, Ayelet</au><au>Yao, Kaiyuan</au><au>Fernandez-Bravo, Angel</au><au>Kotulska, Agata M.</au><au>Nam, Sang Hwan</au><au>Suh, Yung Doug</au><au>Bednarkiewicz, Artur</au><au>Cohen, Bruce E.</au><au>Chan, Emory M.</au><au>Schuck, P. James</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant nonlinear optical responses from photon-avalanching nanoparticles</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>589</volume><issue>7841</issue><spage>230</spage><epage>235</epage><pages>230-235</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Avalanche phenomena use steeply nonlinear dynamics to generate disproportionately large responses from small perturbations, and are found in a multitude of events and materials
1
. Photon avalanching enables technologies such as optical phase-conjugate imaging
2
, infrared quantum counting
3
and efficient upconverted lasing
4
–
6
. However, the photon-avalanching mechanism underlying these optical applications has been observed only in bulk materials and aggregates
6
,
7
, limiting its utility and impact. Here we report the realization of photon avalanching at room temperature in single nanostructures—small, Tm
3+
-doped upconverting nanocrystals—and demonstrate their use in super-resolution imaging in near-infrared spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave lasers, and exhibit all of the defining features of photon avalanching, including clear excitation-power thresholds, exceptionally long rise time at threshold, and a dominant excited-state absorption that is more than 10,000 times larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of the pump intensity, owing to induced positive optical feedback in each nanocrystal. This enables the experimental realization of photon-avalanche single-beam super-resolution imaging
7
with sub-70-nanometre spatial resolution, achieved by using only simple scanning confocal microscopy and without any computational analysis. Pairing their steep nonlinearity with existing super-resolution techniques and computational methods
8
–
10
, ANPs enable imaging with higher resolution and at excitation intensities about 100 times lower than other probes. The low photon-avalanching threshold and excellent photostability of ANPs also suggest their utility in a diverse array of applications, including sub-wavelength imaging
7
,
11
,
12
and optical and environmental sensing
13
–
15
.
Room-temperature photon avalanching realized in single thulium-doped upconverting nanocrystals enables super-resolution imaging at near-infrared wavelengths of maximal biological transparency and provides a material platform potentially suitable for other optical technologies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33442042</pmid><doi>10.1038/s41586-020-03092-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3655-3638</orcidid><orcidid>https://orcid.org/0000-0001-5032-3631</orcidid><orcidid>https://orcid.org/0000-0001-6335-9537</orcidid><orcidid>https://orcid.org/0000-0003-2352-693X</orcidid><orcidid>https://orcid.org/0000-0002-5655-0146</orcidid><orcidid>https://orcid.org/0000-0001-9244-2671</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000000163359537</orcidid><orcidid>https://orcid.org/0000000336553638</orcidid><orcidid>https://orcid.org/0000000192442671</orcidid><orcidid>https://orcid.org/0000000150323631</orcidid><orcidid>https://orcid.org/000000032352693X</orcidid><orcidid>https://orcid.org/0000000341130365</orcidid><orcidid>https://orcid.org/0000000256550146</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-01, Vol.589 (7841), p.230-235 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1764563 |
source | Springer Nature - Complete Springer Journals; Springer Nature - Connect here FIRST to enable access |
subjects | 140/125 639/301/357 639/624/399 639/925/357/354 Absorption Atomic properties Cross relaxation Decay rate Design specifications Emission Emissions Energy Excitation Glass substrates Humanities and Social Sciences Infrared windows MATERIALS SCIENCE Mechanical properties multidisciplinary Nanocrystals Nanomaterials Nanoparticles nanoscale materials Nonlinear optics Nonlinear systems Nonlinearity Observations optical materials and structures Phase transitions Photons Science Science (multidisciplinary) Thulium Wavelengths Ytterbium |
title | Giant nonlinear optical responses from photon-avalanching nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20nonlinear%20optical%20responses%20from%20photon-avalanching%20nanoparticles&rft.jtitle=Nature%20(London)&rft.au=Lee,%20Changhwan&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Molecular%20Foundry&rft.date=2021-01-14&rft.volume=589&rft.issue=7841&rft.spage=230&rft.epage=235&rft.pages=230-235&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-03092-9&rft_dat=%3Cgale_osti_%3EA650181131%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479069593&rft_id=info:pmid/33442042&rft_galeid=A650181131&rfr_iscdi=true |