Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes

A comprehensive understanding of the solid–electrolyte interphase (SEI) composition is crucial to developing high-energy batteries based on lithium metal anodes. A particularly contentious issue concerns the presence of LiH in the SEI. Here we report on the use of synchrotron-based X-ray diffraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2021-05, Vol.16 (5), p.549-554
Hauptverfasser: Shadike, Zulipiya, Lee, Hongkyung, Borodin, Oleg, Cao, Xia, Fan, Xiulin, Wang, Xuelong, Lin, Ruoqian, Bak, Seong-Min, Ghose, Sanjit, Xu, Kang, Wang, Chunsheng, Liu, Jun, Xiao, Jie, Yang, Xiao-Qing, Hu, Enyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 554
container_issue 5
container_start_page 549
container_title Nature nanotechnology
container_volume 16
creator Shadike, Zulipiya
Lee, Hongkyung
Borodin, Oleg
Cao, Xia
Fan, Xiulin
Wang, Xuelong
Lin, Ruoqian
Bak, Seong-Min
Ghose, Sanjit
Xu, Kang
Wang, Chunsheng
Liu, Jun
Xiao, Jie
Yang, Xiao-Qing
Hu, Enyuan
description A comprehensive understanding of the solid–electrolyte interphase (SEI) composition is crucial to developing high-energy batteries based on lithium metal anodes. A particularly contentious issue concerns the presence of LiH in the SEI. Here we report on the use of synchrotron-based X-ray diffraction and pair distribution function analysis to identify and differentiate two elusive components, LiH and LiF, in the SEI of lithium metal anodes. LiH is identified as a component of the SEI in high abundance, and the possibility of its misidentification as LiF in the literature is discussed. LiF in the SEI is found to have different structural features from LiF in the bulk phase, including a larger lattice parameter and a smaller grain size (
doi_str_mv 10.1038/s41565-020-00845-5
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1764002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483811447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-cbe59fa8dc276e82ac6f114a6696e7160c5879df882dbdce3a157722045189a83</originalsourceid><addsrcrecordid>eNp9kb1uFTEQhVeIiITAC1CgFTRpFvxvb4ki8iNdiSapLV97luvgtS-2t7gd78Ab8iQ42RAkCiqPPN85M6PTdW8w-oARVR8Lw1zwARE0IKQYH_iz7gRLpgZKR_78qVbyuHtZyh1CnIyEveiOKeUYMU5Pum_XDmL1k7em-hT7NPUbf9Wb6PpoYrL5UKoJwUdo_xe9j33dQV9S8O7Xj58QwNacwqFCa1XI-50pcG8SfN35Ze5naPJmlxyUV93RZEKB14_vaXd78fnm_GrYfLm8Pv-0GSxTvA52C3ycjHKWSAGKGCsmjJkRYhQgsUCWKzm6SSnits4CNZhLSUg7CKvRKHravVt9U6leF-sr2J1NMbZlNZaCIUQadLZC-5y-L1Cqnn2xEIKJkJaiCVNUtbFMNvT9P-hdWnJsJ2jCiWBSjHRsFFkpm1MpGSa9z342-aAx0vd56TUv3fLSD3lp3kRvH62X7QzuSfInoAbQFSitFb9C_jv7P7a_AYW1oPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526476939</pqid></control><display><type>article</type><title>Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Shadike, Zulipiya ; Lee, Hongkyung ; Borodin, Oleg ; Cao, Xia ; Fan, Xiulin ; Wang, Xuelong ; Lin, Ruoqian ; Bak, Seong-Min ; Ghose, Sanjit ; Xu, Kang ; Wang, Chunsheng ; Liu, Jun ; Xiao, Jie ; Yang, Xiao-Qing ; Hu, Enyuan</creator><creatorcontrib>Shadike, Zulipiya ; Lee, Hongkyung ; Borodin, Oleg ; Cao, Xia ; Fan, Xiulin ; Wang, Xuelong ; Lin, Ruoqian ; Bak, Seong-Min ; Ghose, Sanjit ; Xu, Kang ; Wang, Chunsheng ; Liu, Jun ; Xiao, Jie ; Yang, Xiao-Qing ; Hu, Enyuan ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>A comprehensive understanding of the solid–electrolyte interphase (SEI) composition is crucial to developing high-energy batteries based on lithium metal anodes. A particularly contentious issue concerns the presence of LiH in the SEI. Here we report on the use of synchrotron-based X-ray diffraction and pair distribution function analysis to identify and differentiate two elusive components, LiH and LiF, in the SEI of lithium metal anodes. LiH is identified as a component of the SEI in high abundance, and the possibility of its misidentification as LiF in the literature is discussed. LiF in the SEI is found to have different structural features from LiF in the bulk phase, including a larger lattice parameter and a smaller grain size (&lt;3 nm). These characteristics favour Li + transport and explain why an ionic insulator, like LiF, has been found to be a favoured component for the SEI. Finally, pair distribution function analysis reveals key amorphous components in the SEI. X-ray diffraction and Rietveld refinement analysis confirm the presence of LiH in the solid–electrolyte interphase of lithium metal anodes.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-00845-5</identifier><identifier>PMID: 33510453</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/638/161/891 ; Anodes ; Batteries ; Chemistry and Materials Science ; Distribution functions ; Electrolytes ; Function analysis ; Grain size ; Interphase ; Lithium ; Lithium fluoride ; lithium metal anode ; MATERIALS SCIENCE ; Metals ; Nanotechnology ; Nanotechnology and Microengineering ; PDF ; synchrotron characterization ; Synchrotrons ; X-ray diffraction</subject><ispartof>Nature nanotechnology, 2021-05, Vol.16 (5), p.549-554</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-cbe59fa8dc276e82ac6f114a6696e7160c5879df882dbdce3a157722045189a83</citedby><cites>FETCH-LOGICAL-c485t-cbe59fa8dc276e82ac6f114a6696e7160c5879df882dbdce3a157722045189a83</cites><orcidid>0000-0002-1626-5949 ; 0000-0002-8626-6381 ; 0000-0002-6946-8635 ; 0000-0001-8663-7771 ; 0000-0002-1881-4534 ; 0000-0002-9428-5291 ; 0000-0002-5520-5439 ; 0000-0002-3625-3478 ; 0000000294285291 ; 0000000269468635 ; 0000000236253478 ; 0000000186637771 ; 0000000216265949 ; 0000000255205439 ; 0000000191407495 ; 0000000218814534 ; 0000000286266381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33510453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1764002$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Lee, Hongkyung</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Cao, Xia</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Wang, Xuelong</creatorcontrib><creatorcontrib>Lin, Ruoqian</creatorcontrib><creatorcontrib>Bak, Seong-Min</creatorcontrib><creatorcontrib>Ghose, Sanjit</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>A comprehensive understanding of the solid–electrolyte interphase (SEI) composition is crucial to developing high-energy batteries based on lithium metal anodes. A particularly contentious issue concerns the presence of LiH in the SEI. Here we report on the use of synchrotron-based X-ray diffraction and pair distribution function analysis to identify and differentiate two elusive components, LiH and LiF, in the SEI of lithium metal anodes. LiH is identified as a component of the SEI in high abundance, and the possibility of its misidentification as LiF in the literature is discussed. LiF in the SEI is found to have different structural features from LiF in the bulk phase, including a larger lattice parameter and a smaller grain size (&lt;3 nm). These characteristics favour Li + transport and explain why an ionic insulator, like LiF, has been found to be a favoured component for the SEI. Finally, pair distribution function analysis reveals key amorphous components in the SEI. X-ray diffraction and Rietveld refinement analysis confirm the presence of LiH in the solid–electrolyte interphase of lithium metal anodes.</description><subject>639/301/299/891</subject><subject>639/638/161/891</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Chemistry and Materials Science</subject><subject>Distribution functions</subject><subject>Electrolytes</subject><subject>Function analysis</subject><subject>Grain size</subject><subject>Interphase</subject><subject>Lithium</subject><subject>Lithium fluoride</subject><subject>lithium metal anode</subject><subject>MATERIALS SCIENCE</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>PDF</subject><subject>synchrotron characterization</subject><subject>Synchrotrons</subject><subject>X-ray diffraction</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kb1uFTEQhVeIiITAC1CgFTRpFvxvb4ki8iNdiSapLV97luvgtS-2t7gd78Ab8iQ42RAkCiqPPN85M6PTdW8w-oARVR8Lw1zwARE0IKQYH_iz7gRLpgZKR_78qVbyuHtZyh1CnIyEveiOKeUYMU5Pum_XDmL1k7em-hT7NPUbf9Wb6PpoYrL5UKoJwUdo_xe9j33dQV9S8O7Xj58QwNacwqFCa1XI-50pcG8SfN35Ze5naPJmlxyUV93RZEKB14_vaXd78fnm_GrYfLm8Pv-0GSxTvA52C3ycjHKWSAGKGCsmjJkRYhQgsUCWKzm6SSnits4CNZhLSUg7CKvRKHravVt9U6leF-sr2J1NMbZlNZaCIUQadLZC-5y-L1Cqnn2xEIKJkJaiCVNUtbFMNvT9P-hdWnJsJ2jCiWBSjHRsFFkpm1MpGSa9z342-aAx0vd56TUv3fLSD3lp3kRvH62X7QzuSfInoAbQFSitFb9C_jv7P7a_AYW1oPs</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Shadike, Zulipiya</creator><creator>Lee, Hongkyung</creator><creator>Borodin, Oleg</creator><creator>Cao, Xia</creator><creator>Fan, Xiulin</creator><creator>Wang, Xuelong</creator><creator>Lin, Ruoqian</creator><creator>Bak, Seong-Min</creator><creator>Ghose, Sanjit</creator><creator>Xu, Kang</creator><creator>Wang, Chunsheng</creator><creator>Liu, Jun</creator><creator>Xiao, Jie</creator><creator>Yang, Xiao-Qing</creator><creator>Hu, Enyuan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1626-5949</orcidid><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000-0002-6946-8635</orcidid><orcidid>https://orcid.org/0000-0001-8663-7771</orcidid><orcidid>https://orcid.org/0000-0002-1881-4534</orcidid><orcidid>https://orcid.org/0000-0002-9428-5291</orcidid><orcidid>https://orcid.org/0000-0002-5520-5439</orcidid><orcidid>https://orcid.org/0000-0002-3625-3478</orcidid><orcidid>https://orcid.org/0000000294285291</orcidid><orcidid>https://orcid.org/0000000269468635</orcidid><orcidid>https://orcid.org/0000000236253478</orcidid><orcidid>https://orcid.org/0000000186637771</orcidid><orcidid>https://orcid.org/0000000216265949</orcidid><orcidid>https://orcid.org/0000000255205439</orcidid><orcidid>https://orcid.org/0000000191407495</orcidid><orcidid>https://orcid.org/0000000218814534</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid></search><sort><creationdate>20210501</creationdate><title>Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes</title><author>Shadike, Zulipiya ; Lee, Hongkyung ; Borodin, Oleg ; Cao, Xia ; Fan, Xiulin ; Wang, Xuelong ; Lin, Ruoqian ; Bak, Seong-Min ; Ghose, Sanjit ; Xu, Kang ; Wang, Chunsheng ; Liu, Jun ; Xiao, Jie ; Yang, Xiao-Qing ; Hu, Enyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-cbe59fa8dc276e82ac6f114a6696e7160c5879df882dbdce3a157722045189a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/299/891</topic><topic>639/638/161/891</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Chemistry and Materials Science</topic><topic>Distribution functions</topic><topic>Electrolytes</topic><topic>Function analysis</topic><topic>Grain size</topic><topic>Interphase</topic><topic>Lithium</topic><topic>Lithium fluoride</topic><topic>lithium metal anode</topic><topic>MATERIALS SCIENCE</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>PDF</topic><topic>synchrotron characterization</topic><topic>Synchrotrons</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Lee, Hongkyung</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Cao, Xia</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Wang, Xuelong</creatorcontrib><creatorcontrib>Lin, Ruoqian</creatorcontrib><creatorcontrib>Bak, Seong-Min</creatorcontrib><creatorcontrib>Ghose, Sanjit</creatorcontrib><creatorcontrib>Xu, Kang</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shadike, Zulipiya</au><au>Lee, Hongkyung</au><au>Borodin, Oleg</au><au>Cao, Xia</au><au>Fan, Xiulin</au><au>Wang, Xuelong</au><au>Lin, Ruoqian</au><au>Bak, Seong-Min</au><au>Ghose, Sanjit</au><au>Xu, Kang</au><au>Wang, Chunsheng</au><au>Liu, Jun</au><au>Xiao, Jie</au><au>Yang, Xiao-Qing</au><au>Hu, Enyuan</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>549</spage><epage>554</epage><pages>549-554</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>A comprehensive understanding of the solid–electrolyte interphase (SEI) composition is crucial to developing high-energy batteries based on lithium metal anodes. A particularly contentious issue concerns the presence of LiH in the SEI. Here we report on the use of synchrotron-based X-ray diffraction and pair distribution function analysis to identify and differentiate two elusive components, LiH and LiF, in the SEI of lithium metal anodes. LiH is identified as a component of the SEI in high abundance, and the possibility of its misidentification as LiF in the literature is discussed. LiF in the SEI is found to have different structural features from LiF in the bulk phase, including a larger lattice parameter and a smaller grain size (&lt;3 nm). These characteristics favour Li + transport and explain why an ionic insulator, like LiF, has been found to be a favoured component for the SEI. Finally, pair distribution function analysis reveals key amorphous components in the SEI. X-ray diffraction and Rietveld refinement analysis confirm the presence of LiH in the solid–electrolyte interphase of lithium metal anodes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33510453</pmid><doi>10.1038/s41565-020-00845-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1626-5949</orcidid><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000-0002-6946-8635</orcidid><orcidid>https://orcid.org/0000-0001-8663-7771</orcidid><orcidid>https://orcid.org/0000-0002-1881-4534</orcidid><orcidid>https://orcid.org/0000-0002-9428-5291</orcidid><orcidid>https://orcid.org/0000-0002-5520-5439</orcidid><orcidid>https://orcid.org/0000-0002-3625-3478</orcidid><orcidid>https://orcid.org/0000000294285291</orcidid><orcidid>https://orcid.org/0000000269468635</orcidid><orcidid>https://orcid.org/0000000236253478</orcidid><orcidid>https://orcid.org/0000000186637771</orcidid><orcidid>https://orcid.org/0000000216265949</orcidid><orcidid>https://orcid.org/0000000255205439</orcidid><orcidid>https://orcid.org/0000000191407495</orcidid><orcidid>https://orcid.org/0000000218814534</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2021-05, Vol.16 (5), p.549-554
issn 1748-3387
1748-3395
language eng
recordid cdi_osti_scitechconnect_1764002
source Nature; Alma/SFX Local Collection
subjects 639/301/299/891
639/638/161/891
Anodes
Batteries
Chemistry and Materials Science
Distribution functions
Electrolytes
Function analysis
Grain size
Interphase
Lithium
Lithium fluoride
lithium metal anode
MATERIALS SCIENCE
Metals
Nanotechnology
Nanotechnology and Microengineering
PDF
synchrotron characterization
Synchrotrons
X-ray diffraction
title Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20LiH%20and%20nanocrystalline%20LiF%20in%20the%20solid%E2%80%93electrolyte%20interphase%20of%20lithium%20metal%20anodes&rft.jtitle=Nature%20nanotechnology&rft.au=Shadike,%20Zulipiya&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2021-05-01&rft.volume=16&rft.issue=5&rft.spage=549&rft.epage=554&rft.pages=549-554&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-00845-5&rft_dat=%3Cproquest_osti_%3E2483811447%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526476939&rft_id=info:pmid/33510453&rfr_iscdi=true