Machine learning for metabolic engineering: A review
Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and imp...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2020-11, Vol.63 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Metabolic engineering |
container_volume | 63 |
creator | Lawson, Christopher E. Martí, Jose Manuel Radivojevic, Tijana Jonnalagadda, Sai R. Gentz, Reinhard Hillson, Nathan J. Peisert, Sean Kim, Joonhoon Simmons, Blake A. Petzold, Christopher J. Singer, Steven W. Mukhopadhyay, Aindrila Tanjore, Deepti Dunn, Joshua G. Garcia Martin, Hector |
description | Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1763781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1763781</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17637813</originalsourceid><addsrcrecordid>eNpjYeA0NLA00zU3NDfjYOAqLs4yMDA0NLU05GQw8U1MzsjMS1XISU0sysvMS1dIyy9SyE0tSUzKz8lMVkjNSwfKphYBZawUHBWKUssyU8t5GFjTEnOKU3mhNDeDkptriLOHbn5xSWZ8cXJmSWpyRnJ-Xl5qckk80E5jcwtDY6IUAQCAyjPR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning for metabolic engineering: A review</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lawson, Christopher E. ; Martí, Jose Manuel ; Radivojevic, Tijana ; Jonnalagadda, Sai R. ; Gentz, Reinhard ; Hillson, Nathan J. ; Peisert, Sean ; Kim, Joonhoon ; Simmons, Blake A. ; Petzold, Christopher J. ; Singer, Steven W. ; Mukhopadhyay, Aindrila ; Tanjore, Deepti ; Dunn, Joshua G. ; Garcia Martin, Hector</creator><creatorcontrib>Lawson, Christopher E. ; Martí, Jose Manuel ; Radivojevic, Tijana ; Jonnalagadda, Sai R. ; Gentz, Reinhard ; Hillson, Nathan J. ; Peisert, Sean ; Kim, Joonhoon ; Simmons, Blake A. ; Petzold, Christopher J. ; Singer, Steven W. ; Mukhopadhyay, Aindrila ; Tanjore, Deepti ; Dunn, Joshua G. ; Garcia Martin, Hector ; USDOE Bioenergy Research Centers (BRC) (United States). Joint BioEnergy Inst. (JBEI) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.</description><identifier>ISSN: 1096-7176</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Deep learning ; Machine learning ; Metabolic engineering ; Synthetic biology</subject><ispartof>Metabolic engineering, 2020-11, Vol.63</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000344767257 ; 0000000274251828 ; 0000000271652909 ; 0000000271073448 ; 0000000234731640 ; 0000000335669719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1763781$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawson, Christopher E.</creatorcontrib><creatorcontrib>Martí, Jose Manuel</creatorcontrib><creatorcontrib>Radivojevic, Tijana</creatorcontrib><creatorcontrib>Jonnalagadda, Sai R.</creatorcontrib><creatorcontrib>Gentz, Reinhard</creatorcontrib><creatorcontrib>Hillson, Nathan J.</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Kim, Joonhoon</creatorcontrib><creatorcontrib>Simmons, Blake A.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Singer, Steven W.</creatorcontrib><creatorcontrib>Mukhopadhyay, Aindrila</creatorcontrib><creatorcontrib>Tanjore, Deepti</creatorcontrib><creatorcontrib>Dunn, Joshua G.</creatorcontrib><creatorcontrib>Garcia Martin, Hector</creatorcontrib><creatorcontrib>USDOE Bioenergy Research Centers (BRC) (United States). Joint BioEnergy Inst. (JBEI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Machine learning for metabolic engineering: A review</title><title>Metabolic engineering</title><description>Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Metabolic engineering</subject><subject>Synthetic biology</subject><issn>1096-7176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0NLA00zU3NDfjYOAqLs4yMDA0NLU05GQw8U1MzsjMS1XISU0sysvMS1dIyy9SyE0tSUzKz8lMVkjNSwfKphYBZawUHBWKUssyU8t5GFjTEnOKU3mhNDeDkptriLOHbn5xSWZ8cXJmSWpyRnJ-Xl5qckk80E5jcwtDY6IUAQCAyjPR</recordid><startdate>20201119</startdate><enddate>20201119</enddate><creator>Lawson, Christopher E.</creator><creator>Martí, Jose Manuel</creator><creator>Radivojevic, Tijana</creator><creator>Jonnalagadda, Sai R.</creator><creator>Gentz, Reinhard</creator><creator>Hillson, Nathan J.</creator><creator>Peisert, Sean</creator><creator>Kim, Joonhoon</creator><creator>Simmons, Blake A.</creator><creator>Petzold, Christopher J.</creator><creator>Singer, Steven W.</creator><creator>Mukhopadhyay, Aindrila</creator><creator>Tanjore, Deepti</creator><creator>Dunn, Joshua G.</creator><creator>Garcia Martin, Hector</creator><general>Elsevier</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000344767257</orcidid><orcidid>https://orcid.org/0000000274251828</orcidid><orcidid>https://orcid.org/0000000271652909</orcidid><orcidid>https://orcid.org/0000000271073448</orcidid><orcidid>https://orcid.org/0000000234731640</orcidid><orcidid>https://orcid.org/0000000335669719</orcidid></search><sort><creationdate>20201119</creationdate><title>Machine learning for metabolic engineering: A review</title><author>Lawson, Christopher E. ; Martí, Jose Manuel ; Radivojevic, Tijana ; Jonnalagadda, Sai R. ; Gentz, Reinhard ; Hillson, Nathan J. ; Peisert, Sean ; Kim, Joonhoon ; Simmons, Blake A. ; Petzold, Christopher J. ; Singer, Steven W. ; Mukhopadhyay, Aindrila ; Tanjore, Deepti ; Dunn, Joshua G. ; Garcia Martin, Hector</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17637813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Metabolic engineering</topic><topic>Synthetic biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawson, Christopher E.</creatorcontrib><creatorcontrib>Martí, Jose Manuel</creatorcontrib><creatorcontrib>Radivojevic, Tijana</creatorcontrib><creatorcontrib>Jonnalagadda, Sai R.</creatorcontrib><creatorcontrib>Gentz, Reinhard</creatorcontrib><creatorcontrib>Hillson, Nathan J.</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Kim, Joonhoon</creatorcontrib><creatorcontrib>Simmons, Blake A.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Singer, Steven W.</creatorcontrib><creatorcontrib>Mukhopadhyay, Aindrila</creatorcontrib><creatorcontrib>Tanjore, Deepti</creatorcontrib><creatorcontrib>Dunn, Joshua G.</creatorcontrib><creatorcontrib>Garcia Martin, Hector</creatorcontrib><creatorcontrib>USDOE Bioenergy Research Centers (BRC) (United States). Joint BioEnergy Inst. (JBEI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawson, Christopher E.</au><au>Martí, Jose Manuel</au><au>Radivojevic, Tijana</au><au>Jonnalagadda, Sai R.</au><au>Gentz, Reinhard</au><au>Hillson, Nathan J.</au><au>Peisert, Sean</au><au>Kim, Joonhoon</au><au>Simmons, Blake A.</au><au>Petzold, Christopher J.</au><au>Singer, Steven W.</au><au>Mukhopadhyay, Aindrila</au><au>Tanjore, Deepti</au><au>Dunn, Joshua G.</au><au>Garcia Martin, Hector</au><aucorp>USDOE Bioenergy Research Centers (BRC) (United States). Joint BioEnergy Inst. (JBEI)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for metabolic engineering: A review</atitle><jtitle>Metabolic engineering</jtitle><date>2020-11-19</date><risdate>2020</risdate><volume>63</volume><issn>1096-7176</issn><abstract>Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000344767257</orcidid><orcidid>https://orcid.org/0000000274251828</orcidid><orcidid>https://orcid.org/0000000271652909</orcidid><orcidid>https://orcid.org/0000000271073448</orcidid><orcidid>https://orcid.org/0000000234731640</orcidid><orcidid>https://orcid.org/0000000335669719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2020-11, Vol.63 |
issn | 1096-7176 |
language | eng |
recordid | cdi_osti_scitechconnect_1763781 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | BASIC BIOLOGICAL SCIENCES Deep learning Machine learning Metabolic engineering Synthetic biology |
title | Machine learning for metabolic engineering: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20metabolic%20engineering:%20A%20review&rft.jtitle=Metabolic%20engineering&rft.au=Lawson,%20Christopher%20E.&rft.aucorp=USDOE%20Bioenergy%20Research%20Centers%20(BRC)%20(United%20States).%20Joint%20BioEnergy%20Inst.%20(JBEI)&rft.date=2020-11-19&rft.volume=63&rft.issn=1096-7176&rft_id=info:doi/&rft_dat=%3Costi%3E1763781%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |