Machine learning for metabolic engineering: A review

Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2020-11, Vol.63
Hauptverfasser: Lawson, Christopher E., Martí, Jose Manuel, Radivojevic, Tijana, Jonnalagadda, Sai R., Gentz, Reinhard, Hillson, Nathan J., Peisert, Sean, Kim, Joonhoon, Simmons, Blake A., Petzold, Christopher J., Singer, Steven W., Mukhopadhyay, Aindrila, Tanjore, Deepti, Dunn, Joshua G., Garcia Martin, Hector
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Metabolic engineering
container_volume 63
creator Lawson, Christopher E.
Martí, Jose Manuel
Radivojevic, Tijana
Jonnalagadda, Sai R.
Gentz, Reinhard
Hillson, Nathan J.
Peisert, Sean
Kim, Joonhoon
Simmons, Blake A.
Petzold, Christopher J.
Singer, Steven W.
Mukhopadhyay, Aindrila
Tanjore, Deepti
Dunn, Joshua G.
Garcia Martin, Hector
description Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1763781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1763781</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17637813</originalsourceid><addsrcrecordid>eNpjYeA0NLA00zU3NDfjYOAqLs4yMDA0NLU05GQw8U1MzsjMS1XISU0sysvMS1dIyy9SyE0tSUzKz8lMVkjNSwfKphYBZawUHBWKUssyU8t5GFjTEnOKU3mhNDeDkptriLOHbn5xSWZ8cXJmSWpyRnJ-Xl5qckk80E5jcwtDY6IUAQCAyjPR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning for metabolic engineering: A review</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lawson, Christopher E. ; Martí, Jose Manuel ; Radivojevic, Tijana ; Jonnalagadda, Sai R. ; Gentz, Reinhard ; Hillson, Nathan J. ; Peisert, Sean ; Kim, Joonhoon ; Simmons, Blake A. ; Petzold, Christopher J. ; Singer, Steven W. ; Mukhopadhyay, Aindrila ; Tanjore, Deepti ; Dunn, Joshua G. ; Garcia Martin, Hector</creator><creatorcontrib>Lawson, Christopher E. ; Martí, Jose Manuel ; Radivojevic, Tijana ; Jonnalagadda, Sai R. ; Gentz, Reinhard ; Hillson, Nathan J. ; Peisert, Sean ; Kim, Joonhoon ; Simmons, Blake A. ; Petzold, Christopher J. ; Singer, Steven W. ; Mukhopadhyay, Aindrila ; Tanjore, Deepti ; Dunn, Joshua G. ; Garcia Martin, Hector ; USDOE Bioenergy Research Centers (BRC) (United States). Joint BioEnergy Inst. (JBEI) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.</description><identifier>ISSN: 1096-7176</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Deep learning ; Machine learning ; Metabolic engineering ; Synthetic biology</subject><ispartof>Metabolic engineering, 2020-11, Vol.63</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000344767257 ; 0000000274251828 ; 0000000271652909 ; 0000000271073448 ; 0000000234731640 ; 0000000335669719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1763781$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawson, Christopher E.</creatorcontrib><creatorcontrib>Martí, Jose Manuel</creatorcontrib><creatorcontrib>Radivojevic, Tijana</creatorcontrib><creatorcontrib>Jonnalagadda, Sai R.</creatorcontrib><creatorcontrib>Gentz, Reinhard</creatorcontrib><creatorcontrib>Hillson, Nathan J.</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Kim, Joonhoon</creatorcontrib><creatorcontrib>Simmons, Blake A.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Singer, Steven W.</creatorcontrib><creatorcontrib>Mukhopadhyay, Aindrila</creatorcontrib><creatorcontrib>Tanjore, Deepti</creatorcontrib><creatorcontrib>Dunn, Joshua G.</creatorcontrib><creatorcontrib>Garcia Martin, Hector</creatorcontrib><creatorcontrib>USDOE Bioenergy Research Centers (BRC) (United States). Joint BioEnergy Inst. (JBEI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Machine learning for metabolic engineering: A review</title><title>Metabolic engineering</title><description>Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Metabolic engineering</subject><subject>Synthetic biology</subject><issn>1096-7176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0NLA00zU3NDfjYOAqLs4yMDA0NLU05GQw8U1MzsjMS1XISU0sysvMS1dIyy9SyE0tSUzKz8lMVkjNSwfKphYBZawUHBWKUssyU8t5GFjTEnOKU3mhNDeDkptriLOHbn5xSWZ8cXJmSWpyRnJ-Xl5qckk80E5jcwtDY6IUAQCAyjPR</recordid><startdate>20201119</startdate><enddate>20201119</enddate><creator>Lawson, Christopher E.</creator><creator>Martí, Jose Manuel</creator><creator>Radivojevic, Tijana</creator><creator>Jonnalagadda, Sai R.</creator><creator>Gentz, Reinhard</creator><creator>Hillson, Nathan J.</creator><creator>Peisert, Sean</creator><creator>Kim, Joonhoon</creator><creator>Simmons, Blake A.</creator><creator>Petzold, Christopher J.</creator><creator>Singer, Steven W.</creator><creator>Mukhopadhyay, Aindrila</creator><creator>Tanjore, Deepti</creator><creator>Dunn, Joshua G.</creator><creator>Garcia Martin, Hector</creator><general>Elsevier</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000344767257</orcidid><orcidid>https://orcid.org/0000000274251828</orcidid><orcidid>https://orcid.org/0000000271652909</orcidid><orcidid>https://orcid.org/0000000271073448</orcidid><orcidid>https://orcid.org/0000000234731640</orcidid><orcidid>https://orcid.org/0000000335669719</orcidid></search><sort><creationdate>20201119</creationdate><title>Machine learning for metabolic engineering: A review</title><author>Lawson, Christopher E. ; Martí, Jose Manuel ; Radivojevic, Tijana ; Jonnalagadda, Sai R. ; Gentz, Reinhard ; Hillson, Nathan J. ; Peisert, Sean ; Kim, Joonhoon ; Simmons, Blake A. ; Petzold, Christopher J. ; Singer, Steven W. ; Mukhopadhyay, Aindrila ; Tanjore, Deepti ; Dunn, Joshua G. ; Garcia Martin, Hector</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17637813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Metabolic engineering</topic><topic>Synthetic biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawson, Christopher E.</creatorcontrib><creatorcontrib>Martí, Jose Manuel</creatorcontrib><creatorcontrib>Radivojevic, Tijana</creatorcontrib><creatorcontrib>Jonnalagadda, Sai R.</creatorcontrib><creatorcontrib>Gentz, Reinhard</creatorcontrib><creatorcontrib>Hillson, Nathan J.</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Kim, Joonhoon</creatorcontrib><creatorcontrib>Simmons, Blake A.</creatorcontrib><creatorcontrib>Petzold, Christopher J.</creatorcontrib><creatorcontrib>Singer, Steven W.</creatorcontrib><creatorcontrib>Mukhopadhyay, Aindrila</creatorcontrib><creatorcontrib>Tanjore, Deepti</creatorcontrib><creatorcontrib>Dunn, Joshua G.</creatorcontrib><creatorcontrib>Garcia Martin, Hector</creatorcontrib><creatorcontrib>USDOE Bioenergy Research Centers (BRC) (United States). Joint BioEnergy Inst. (JBEI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawson, Christopher E.</au><au>Martí, Jose Manuel</au><au>Radivojevic, Tijana</au><au>Jonnalagadda, Sai R.</au><au>Gentz, Reinhard</au><au>Hillson, Nathan J.</au><au>Peisert, Sean</au><au>Kim, Joonhoon</au><au>Simmons, Blake A.</au><au>Petzold, Christopher J.</au><au>Singer, Steven W.</au><au>Mukhopadhyay, Aindrila</au><au>Tanjore, Deepti</au><au>Dunn, Joshua G.</au><au>Garcia Martin, Hector</au><aucorp>USDOE Bioenergy Research Centers (BRC) (United States). Joint BioEnergy Inst. (JBEI)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for metabolic engineering: A review</atitle><jtitle>Metabolic engineering</jtitle><date>2020-11-19</date><risdate>2020</risdate><volume>63</volume><issn>1096-7176</issn><abstract>Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000344767257</orcidid><orcidid>https://orcid.org/0000000274251828</orcidid><orcidid>https://orcid.org/0000000271652909</orcidid><orcidid>https://orcid.org/0000000271073448</orcidid><orcidid>https://orcid.org/0000000234731640</orcidid><orcidid>https://orcid.org/0000000335669719</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2020-11, Vol.63
issn 1096-7176
language eng
recordid cdi_osti_scitechconnect_1763781
source ScienceDirect Journals (5 years ago - present)
subjects BASIC BIOLOGICAL SCIENCES
Deep learning
Machine learning
Metabolic engineering
Synthetic biology
title Machine learning for metabolic engineering: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20metabolic%20engineering:%20A%20review&rft.jtitle=Metabolic%20engineering&rft.au=Lawson,%20Christopher%20E.&rft.aucorp=USDOE%20Bioenergy%20Research%20Centers%20(BRC)%20(United%20States).%20Joint%20BioEnergy%20Inst.%20(JBEI)&rft.date=2020-11-19&rft.volume=63&rft.issn=1096-7176&rft_id=info:doi/&rft_dat=%3Costi%3E1763781%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true