Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study

This study examines future changes in precipitation over Northeast Asia and Korea using five regional climate model (RCM) simulations driven by single global climate model (GCM) under two representative concentration pathway (RCP) emission scenarios. Focusing on summer season (June–July–August) when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2017-12, Vol.49 (11-12), p.4121-4139
Hauptverfasser: Lee, Donghyun, Min, Seung-Ki, Jin, Jonghun, Lee, Ji-Woo, Cha, Dong-Hyun, Suh, Myoung-Seok, Ahn, Joong-Bae, Hong, Song-You, Kang, Hyun-Suk, Joh, Minsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4139
container_issue 11-12
container_start_page 4121
container_title Climate dynamics
container_volume 49
creator Lee, Donghyun
Min, Seung-Ki
Jin, Jonghun
Lee, Ji-Woo
Cha, Dong-Hyun
Suh, Myoung-Seok
Ahn, Joong-Bae
Hong, Song-You
Kang, Hyun-Suk
Joh, Minsu
description This study examines future changes in precipitation over Northeast Asia and Korea using five regional climate model (RCM) simulations driven by single global climate model (GCM) under two representative concentration pathway (RCP) emission scenarios. Focusing on summer season (June–July–August) when heavy rains dominate in this region, future changes in precipitation and associated variables including temperature, moisture, and winds are analyzed by comparing future conditions (2071–2100) with a present climate (1981–2005). Physical mechanisms are examined by analyzing moisture flux convergence at 850 hPa level, which is found to have a close relationship to precipitation and by assessing contribution of thermodynamic effect (TH, moisture increase due to warming) and dynamic effect (DY, atmospheric circulation change) to changes in the moisture flux convergence. Overall background warming and moistening are projected over the Northeast Asia with a good inter-RCM agreement, indicating dominant influence of the driving GCM. Also, RCMs consistently project increases in the frequency of heavy rains and the intensification of extreme precipitation over South Korea. Analysis of moisture flux convergence reveals competing impacts between TH and DY. The TH effect contributes to the overall increases in mean precipitation over Northeast Asia and in extreme precipitation over South Korea, irrespective of models and scenarios. However, DY effect is found to induce local-scale precipitation decreases over the central part of the Korean Peninsula with large inter-RCM and inter-scenario differences. Composite analysis of daily anomaly synoptic patterns indicates that extreme precipitation events are mainly associated with the southwest to northeast evolution of large-scale low-pressure system in both present and future climates.
doi_str_mv 10.1007/s00382-017-3566-4
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1762900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A514657384</galeid><sourcerecordid>A514657384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-df4b22d12a8d3752a838f858e341dd7c39fb626decc5334e47e4d9ad0c3736713</originalsourceid><addsrcrecordid>eNp1kkFv1DAQhS0EEsuWH8DNAgmJQ1o7duKE22pVoKItUilny2tPNq4Se7EdxF755TgEpO4B-TDW6HuW581D6BUl55QQcREJYU1ZECoKVtV1wZ-gFeUsd5qWP0Ur0jJSiEpUz9GLGB8IobwW5Qr9uu8hjN4cnRqtxsoZ_O-uvUvB7qZkvYs4edxNaQqAda_cHiK2DsdpHCHgQwBtDzapGcX-R27d-pB6UDHhTbTqz7uffQD1His8TkOyxd32Bsc0meMZetapIcLLv3WNvn24vN9-Kq6_fLzabq4LzVuSCtPxXVkaWqrGMFHlwpquqRpgnBojNGu7XV3WBrSuGOPABXDTKkM0E6wWlK3R6-VdH5OVUdsEus9DOtBJUlGXbfZwjd4s0CH47xPEJB_8FFz-l6RtzXnVNoRl6nyh9moAaV3nU1A6HwPZOe-gs7m_qbLJlWANz4J3J4LZW_iZ9mqKUV59vTtl3z5is4lD6qMflj2cgnQBdfAxBujkIdhRhaOkRM6pkEsqZE6FnFMhZ025aGJm8xrDo_n-K_oN5Yq5Ow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964459803</pqid></control><display><type>article</type><title>Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study</title><source>SpringerLink Journals</source><creator>Lee, Donghyun ; Min, Seung-Ki ; Jin, Jonghun ; Lee, Ji-Woo ; Cha, Dong-Hyun ; Suh, Myoung-Seok ; Ahn, Joong-Bae ; Hong, Song-You ; Kang, Hyun-Suk ; Joh, Minsu</creator><creatorcontrib>Lee, Donghyun ; Min, Seung-Ki ; Jin, Jonghun ; Lee, Ji-Woo ; Cha, Dong-Hyun ; Suh, Myoung-Seok ; Ahn, Joong-Bae ; Hong, Song-You ; Kang, Hyun-Suk ; Joh, Minsu ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>This study examines future changes in precipitation over Northeast Asia and Korea using five regional climate model (RCM) simulations driven by single global climate model (GCM) under two representative concentration pathway (RCP) emission scenarios. Focusing on summer season (June–July–August) when heavy rains dominate in this region, future changes in precipitation and associated variables including temperature, moisture, and winds are analyzed by comparing future conditions (2071–2100) with a present climate (1981–2005). Physical mechanisms are examined by analyzing moisture flux convergence at 850 hPa level, which is found to have a close relationship to precipitation and by assessing contribution of thermodynamic effect (TH, moisture increase due to warming) and dynamic effect (DY, atmospheric circulation change) to changes in the moisture flux convergence. Overall background warming and moistening are projected over the Northeast Asia with a good inter-RCM agreement, indicating dominant influence of the driving GCM. Also, RCMs consistently project increases in the frequency of heavy rains and the intensification of extreme precipitation over South Korea. Analysis of moisture flux convergence reveals competing impacts between TH and DY. The TH effect contributes to the overall increases in mean precipitation over Northeast Asia and in extreme precipitation over South Korea, irrespective of models and scenarios. However, DY effect is found to induce local-scale precipitation decreases over the central part of the Korean Peninsula with large inter-RCM and inter-scenario differences. Composite analysis of daily anomaly synoptic patterns indicates that extreme precipitation events are mainly associated with the southwest to northeast evolution of large-scale low-pressure system in both present and future climates.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-017-3566-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Atmospheric circulation ; Atmospheric circulation changes ; Atmospheric models ; Climate ; Climate models ; Climatology ; Computer simulation ; Convergence ; Earth and Environmental Science ; Earth Sciences ; Environmental aspects ; ENVIRONMENTAL SCIENCES ; Evolution ; Extreme weather ; Fluctuations ; Flux ; Future climates ; Geophysics/Geodesy ; Global climate ; Heavy rainfall ; Korea ; Mean precipitation ; Moisture ; Moisture flux ; moisture flux convergence ; Northeast Asia ; Oceanography ; Precipitation ; Precipitation (Meteorology) ; RCP scenarios ; regional climate models ; Regional climates ; Summer ; Summer precipitation ; Thermodynamics ; Wind ; Winds</subject><ispartof>Climate dynamics, 2017-12, Vol.49 (11-12), p.4121-4139</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-df4b22d12a8d3752a838f858e341dd7c39fb626decc5334e47e4d9ad0c3736713</citedby><cites>FETCH-LOGICAL-c490t-df4b22d12a8d3752a838f858e341dd7c39fb626decc5334e47e4d9ad0c3736713</cites><orcidid>0000-0002-6749-010X ; 000000026749010X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-017-3566-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-017-3566-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1762900$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Donghyun</creatorcontrib><creatorcontrib>Min, Seung-Ki</creatorcontrib><creatorcontrib>Jin, Jonghun</creatorcontrib><creatorcontrib>Lee, Ji-Woo</creatorcontrib><creatorcontrib>Cha, Dong-Hyun</creatorcontrib><creatorcontrib>Suh, Myoung-Seok</creatorcontrib><creatorcontrib>Ahn, Joong-Bae</creatorcontrib><creatorcontrib>Hong, Song-You</creatorcontrib><creatorcontrib>Kang, Hyun-Suk</creatorcontrib><creatorcontrib>Joh, Minsu</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>This study examines future changes in precipitation over Northeast Asia and Korea using five regional climate model (RCM) simulations driven by single global climate model (GCM) under two representative concentration pathway (RCP) emission scenarios. Focusing on summer season (June–July–August) when heavy rains dominate in this region, future changes in precipitation and associated variables including temperature, moisture, and winds are analyzed by comparing future conditions (2071–2100) with a present climate (1981–2005). Physical mechanisms are examined by analyzing moisture flux convergence at 850 hPa level, which is found to have a close relationship to precipitation and by assessing contribution of thermodynamic effect (TH, moisture increase due to warming) and dynamic effect (DY, atmospheric circulation change) to changes in the moisture flux convergence. Overall background warming and moistening are projected over the Northeast Asia with a good inter-RCM agreement, indicating dominant influence of the driving GCM. Also, RCMs consistently project increases in the frequency of heavy rains and the intensification of extreme precipitation over South Korea. Analysis of moisture flux convergence reveals competing impacts between TH and DY. The TH effect contributes to the overall increases in mean precipitation over Northeast Asia and in extreme precipitation over South Korea, irrespective of models and scenarios. However, DY effect is found to induce local-scale precipitation decreases over the central part of the Korean Peninsula with large inter-RCM and inter-scenario differences. Composite analysis of daily anomaly synoptic patterns indicates that extreme precipitation events are mainly associated with the southwest to northeast evolution of large-scale low-pressure system in both present and future climates.</description><subject>Analysis</subject><subject>Atmospheric circulation</subject><subject>Atmospheric circulation changes</subject><subject>Atmospheric models</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental aspects</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Evolution</subject><subject>Extreme weather</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Future climates</subject><subject>Geophysics/Geodesy</subject><subject>Global climate</subject><subject>Heavy rainfall</subject><subject>Korea</subject><subject>Mean precipitation</subject><subject>Moisture</subject><subject>Moisture flux</subject><subject>moisture flux convergence</subject><subject>Northeast Asia</subject><subject>Oceanography</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>RCP scenarios</subject><subject>regional climate models</subject><subject>Regional climates</subject><subject>Summer</subject><subject>Summer precipitation</subject><subject>Thermodynamics</subject><subject>Wind</subject><subject>Winds</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kkFv1DAQhS0EEsuWH8DNAgmJQ1o7duKE22pVoKItUilny2tPNq4Se7EdxF755TgEpO4B-TDW6HuW581D6BUl55QQcREJYU1ZECoKVtV1wZ-gFeUsd5qWP0Ur0jJSiEpUz9GLGB8IobwW5Qr9uu8hjN4cnRqtxsoZ_O-uvUvB7qZkvYs4edxNaQqAda_cHiK2DsdpHCHgQwBtDzapGcX-R27d-pB6UDHhTbTqz7uffQD1His8TkOyxd32Bsc0meMZetapIcLLv3WNvn24vN9-Kq6_fLzabq4LzVuSCtPxXVkaWqrGMFHlwpquqRpgnBojNGu7XV3WBrSuGOPABXDTKkM0E6wWlK3R6-VdH5OVUdsEus9DOtBJUlGXbfZwjd4s0CH47xPEJB_8FFz-l6RtzXnVNoRl6nyh9moAaV3nU1A6HwPZOe-gs7m_qbLJlWANz4J3J4LZW_iZ9mqKUV59vTtl3z5is4lD6qMflj2cgnQBdfAxBujkIdhRhaOkRM6pkEsqZE6FnFMhZ025aGJm8xrDo_n-K_oN5Yq5Ow</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Lee, Donghyun</creator><creator>Min, Seung-Ki</creator><creator>Jin, Jonghun</creator><creator>Lee, Ji-Woo</creator><creator>Cha, Dong-Hyun</creator><creator>Suh, Myoung-Seok</creator><creator>Ahn, Joong-Bae</creator><creator>Hong, Song-You</creator><creator>Kang, Hyun-Suk</creator><creator>Joh, Minsu</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6749-010X</orcidid><orcidid>https://orcid.org/000000026749010X</orcidid></search><sort><creationdate>20171201</creationdate><title>Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study</title><author>Lee, Donghyun ; Min, Seung-Ki ; Jin, Jonghun ; Lee, Ji-Woo ; Cha, Dong-Hyun ; Suh, Myoung-Seok ; Ahn, Joong-Bae ; Hong, Song-You ; Kang, Hyun-Suk ; Joh, Minsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-df4b22d12a8d3752a838f858e341dd7c39fb626decc5334e47e4d9ad0c3736713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Atmospheric circulation</topic><topic>Atmospheric circulation changes</topic><topic>Atmospheric models</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental aspects</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Evolution</topic><topic>Extreme weather</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Future climates</topic><topic>Geophysics/Geodesy</topic><topic>Global climate</topic><topic>Heavy rainfall</topic><topic>Korea</topic><topic>Mean precipitation</topic><topic>Moisture</topic><topic>Moisture flux</topic><topic>moisture flux convergence</topic><topic>Northeast Asia</topic><topic>Oceanography</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>RCP scenarios</topic><topic>regional climate models</topic><topic>Regional climates</topic><topic>Summer</topic><topic>Summer precipitation</topic><topic>Thermodynamics</topic><topic>Wind</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Donghyun</creatorcontrib><creatorcontrib>Min, Seung-Ki</creatorcontrib><creatorcontrib>Jin, Jonghun</creatorcontrib><creatorcontrib>Lee, Ji-Woo</creatorcontrib><creatorcontrib>Cha, Dong-Hyun</creatorcontrib><creatorcontrib>Suh, Myoung-Seok</creatorcontrib><creatorcontrib>Ahn, Joong-Bae</creatorcontrib><creatorcontrib>Hong, Song-You</creatorcontrib><creatorcontrib>Kang, Hyun-Suk</creatorcontrib><creatorcontrib>Joh, Minsu</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Donghyun</au><au>Min, Seung-Ki</au><au>Jin, Jonghun</au><au>Lee, Ji-Woo</au><au>Cha, Dong-Hyun</au><au>Suh, Myoung-Seok</au><au>Ahn, Joong-Bae</au><au>Hong, Song-You</au><au>Kang, Hyun-Suk</au><au>Joh, Minsu</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>49</volume><issue>11-12</issue><spage>4121</spage><epage>4139</epage><pages>4121-4139</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>This study examines future changes in precipitation over Northeast Asia and Korea using five regional climate model (RCM) simulations driven by single global climate model (GCM) under two representative concentration pathway (RCP) emission scenarios. Focusing on summer season (June–July–August) when heavy rains dominate in this region, future changes in precipitation and associated variables including temperature, moisture, and winds are analyzed by comparing future conditions (2071–2100) with a present climate (1981–2005). Physical mechanisms are examined by analyzing moisture flux convergence at 850 hPa level, which is found to have a close relationship to precipitation and by assessing contribution of thermodynamic effect (TH, moisture increase due to warming) and dynamic effect (DY, atmospheric circulation change) to changes in the moisture flux convergence. Overall background warming and moistening are projected over the Northeast Asia with a good inter-RCM agreement, indicating dominant influence of the driving GCM. Also, RCMs consistently project increases in the frequency of heavy rains and the intensification of extreme precipitation over South Korea. Analysis of moisture flux convergence reveals competing impacts between TH and DY. The TH effect contributes to the overall increases in mean precipitation over Northeast Asia and in extreme precipitation over South Korea, irrespective of models and scenarios. However, DY effect is found to induce local-scale precipitation decreases over the central part of the Korean Peninsula with large inter-RCM and inter-scenario differences. Composite analysis of daily anomaly synoptic patterns indicates that extreme precipitation events are mainly associated with the southwest to northeast evolution of large-scale low-pressure system in both present and future climates.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-017-3566-4</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6749-010X</orcidid><orcidid>https://orcid.org/000000026749010X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2017-12, Vol.49 (11-12), p.4121-4139
issn 0930-7575
1432-0894
language eng
recordid cdi_osti_scitechconnect_1762900
source SpringerLink Journals
subjects Analysis
Atmospheric circulation
Atmospheric circulation changes
Atmospheric models
Climate
Climate models
Climatology
Computer simulation
Convergence
Earth and Environmental Science
Earth Sciences
Environmental aspects
ENVIRONMENTAL SCIENCES
Evolution
Extreme weather
Fluctuations
Flux
Future climates
Geophysics/Geodesy
Global climate
Heavy rainfall
Korea
Mean precipitation
Moisture
Moisture flux
moisture flux convergence
Northeast Asia
Oceanography
Precipitation
Precipitation (Meteorology)
RCP scenarios
regional climate models
Regional climates
Summer
Summer precipitation
Thermodynamics
Wind
Winds
title Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20and%20dynamic%20contributions%20to%20future%20changes%20in%20summer%20precipitation%20over%20Northeast%20Asia%20and%20Korea:%20a%20multi-RCM%20study&rft.jtitle=Climate%20dynamics&rft.au=Lee,%20Donghyun&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2017-12-01&rft.volume=49&rft.issue=11-12&rft.spage=4121&rft.epage=4139&rft.pages=4121-4139&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-017-3566-4&rft_dat=%3Cgale_osti_%3EA514657384%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964459803&rft_id=info:pmid/&rft_galeid=A514657384&rfr_iscdi=true