Berry phase in quantum field theory: Diabolical points and boundary phenomena

We study aspects of the Berry phase in gapped many-body quantum systems by means of effective field theory. Once the parameters are promoted to space-time-dependent background fields, such adiabatic phases are described by Wess-Zumino-Witten (WZW) and similar terms. In the presence of symmetries, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-12, Vol.102 (24), Article 245113
Hauptverfasser: Hsin, Po-Shen, Kapustin, Anton, Thorngren, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Physical review. B
container_volume 102
creator Hsin, Po-Shen
Kapustin, Anton
Thorngren, Ryan
description We study aspects of the Berry phase in gapped many-body quantum systems by means of effective field theory. Once the parameters are promoted to space-time-dependent background fields, such adiabatic phases are described by Wess-Zumino-Witten (WZW) and similar terms. In the presence of symmetries, there are also quantized invariants capturing generalized Thouless pumps. Consideration of these terms provides constraints on the phase diagram of many-body systems, implying the existence of gapless points in the phase diagram, which are stable for topological reasons. We describe such diabolical points, realized by free fermions and gauge theories in various dimensions, which act as sources of "higher Berry curvature" and are protected by the quantization of the corresponding WZW terms or Thouless pump terms. These are analogous to Weyl nodes in a semimetal band structure. We argue that in the presence of a boundary, there are boundary diabolical points-parameter values where the boundary gap closes-which occupy arcs ending at the bulk diabolical points. Thus the boundary has an "anomaly in the space of couplings" in the sense of [C. Cordova, D. S. Freed, H. T. Lam, and N. Seiberg, SciPost Phys. 8, 001 (2020) and SciPost Phys. 8, 002 (2020)]. Consideration of the topological effective action for the parameters also provides some new checks on conjectured infrared dualities and deconfined quantum criticality in 2+1d.
doi_str_mv 10.1103/PhysRevB.102.245113
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1762795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480796862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-bdba12f15f44e48b7b1c4235bd603b5bf2ab3f9f06ae8b50fe668da000cd799d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpF7CxYJ3iR-LE7Gh5SkUgBGvLTyVVaqexg9S_JxBgNaO5Z0Z3LgDnGC0xRvTqtT7EN_u5WmJEliQvMKZHYEZyxjPOGT_-7wt0ChYxbhFCmCFeIj4Dzyvb9wfY1TJa2Hi4H6RPww66xrYGptqG_nANbxupQtto2cIuND5FKL2BKgzeyJ9t68POenkGTpxso1381jn4uL97Xz9mm5eHp_XNJtM5QSlTRklMHC5cntu8UqXCo0ALZRiiqlCOSEUdd4hJW6kCOctYZeToW5uSc0Pn4GK6G2JqRNRNsrrWwXurk8AlIyUvRuhygro-7Acbk9iGofejL0HyCpWcVYyMFJ0o3YcYe-tE1ze78SuBkfjOV_zlOw6ImPKlX4rWb-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480796862</pqid></control><display><type>article</type><title>Berry phase in quantum field theory: Diabolical points and boundary phenomena</title><source>American Physical Society Journals</source><creator>Hsin, Po-Shen ; Kapustin, Anton ; Thorngren, Ryan</creator><creatorcontrib>Hsin, Po-Shen ; Kapustin, Anton ; Thorngren, Ryan ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>We study aspects of the Berry phase in gapped many-body quantum systems by means of effective field theory. Once the parameters are promoted to space-time-dependent background fields, such adiabatic phases are described by Wess-Zumino-Witten (WZW) and similar terms. In the presence of symmetries, there are also quantized invariants capturing generalized Thouless pumps. Consideration of these terms provides constraints on the phase diagram of many-body systems, implying the existence of gapless points in the phase diagram, which are stable for topological reasons. We describe such diabolical points, realized by free fermions and gauge theories in various dimensions, which act as sources of "higher Berry curvature" and are protected by the quantization of the corresponding WZW terms or Thouless pump terms. These are analogous to Weyl nodes in a semimetal band structure. We argue that in the presence of a boundary, there are boundary diabolical points-parameter values where the boundary gap closes-which occupy arcs ending at the bulk diabolical points. Thus the boundary has an "anomaly in the space of couplings" in the sense of [C. Cordova, D. S. Freed, H. T. Lam, and N. Seiberg, SciPost Phys. 8, 001 (2020) and SciPost Phys. 8, 002 (2020)]. Consideration of the topological effective action for the parameters also provides some new checks on conjectured infrared dualities and deconfined quantum criticality in 2+1d.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.245113</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Couplings ; Fermions ; Field theory ; Gauge theory ; Geometric &amp; topological phases ; Parameters ; Phase behavior ; Phase diagrams ; Phase transitions ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Quantum field theory ; Quantum mechanics ; Quantum phase transitions ; Quantum theory ; Symmetry protected topological states ; System effectiveness ; Topological field theories ; Topological phases of matter ; Topology</subject><ispartof>Physical review. B, 2020-12, Vol.102 (24), Article 245113</ispartof><rights>Copyright American Physical Society Dec 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-bdba12f15f44e48b7b1c4235bd603b5bf2ab3f9f06ae8b50fe668da000cd799d3</citedby><cites>FETCH-LOGICAL-c420t-bdba12f15f44e48b7b1c4235bd603b5bf2ab3f9f06ae8b50fe668da000cd799d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1762795$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsin, Po-Shen</creatorcontrib><creatorcontrib>Kapustin, Anton</creatorcontrib><creatorcontrib>Thorngren, Ryan</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Berry phase in quantum field theory: Diabolical points and boundary phenomena</title><title>Physical review. B</title><description>We study aspects of the Berry phase in gapped many-body quantum systems by means of effective field theory. Once the parameters are promoted to space-time-dependent background fields, such adiabatic phases are described by Wess-Zumino-Witten (WZW) and similar terms. In the presence of symmetries, there are also quantized invariants capturing generalized Thouless pumps. Consideration of these terms provides constraints on the phase diagram of many-body systems, implying the existence of gapless points in the phase diagram, which are stable for topological reasons. We describe such diabolical points, realized by free fermions and gauge theories in various dimensions, which act as sources of "higher Berry curvature" and are protected by the quantization of the corresponding WZW terms or Thouless pump terms. These are analogous to Weyl nodes in a semimetal band structure. We argue that in the presence of a boundary, there are boundary diabolical points-parameter values where the boundary gap closes-which occupy arcs ending at the bulk diabolical points. Thus the boundary has an "anomaly in the space of couplings" in the sense of [C. Cordova, D. S. Freed, H. T. Lam, and N. Seiberg, SciPost Phys. 8, 001 (2020) and SciPost Phys. 8, 002 (2020)]. Consideration of the topological effective action for the parameters also provides some new checks on conjectured infrared dualities and deconfined quantum criticality in 2+1d.</description><subject>Couplings</subject><subject>Fermions</subject><subject>Field theory</subject><subject>Gauge theory</subject><subject>Geometric &amp; topological phases</subject><subject>Parameters</subject><subject>Phase behavior</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Quantum field theory</subject><subject>Quantum mechanics</subject><subject>Quantum phase transitions</subject><subject>Quantum theory</subject><subject>Symmetry protected topological states</subject><subject>System effectiveness</subject><subject>Topological field theories</subject><subject>Topological phases of matter</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EElXpF7CxYJ3iR-LE7Gh5SkUgBGvLTyVVaqexg9S_JxBgNaO5Z0Z3LgDnGC0xRvTqtT7EN_u5WmJEliQvMKZHYEZyxjPOGT_-7wt0ChYxbhFCmCFeIj4Dzyvb9wfY1TJa2Hi4H6RPww66xrYGptqG_nANbxupQtto2cIuND5FKL2BKgzeyJ9t68POenkGTpxso1381jn4uL97Xz9mm5eHp_XNJtM5QSlTRklMHC5cntu8UqXCo0ALZRiiqlCOSEUdd4hJW6kCOctYZeToW5uSc0Pn4GK6G2JqRNRNsrrWwXurk8AlIyUvRuhygro-7Acbk9iGofejL0HyCpWcVYyMFJ0o3YcYe-tE1ze78SuBkfjOV_zlOw6ImPKlX4rWb-Q</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Hsin, Po-Shen</creator><creator>Kapustin, Anton</creator><creator>Thorngren, Ryan</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20201209</creationdate><title>Berry phase in quantum field theory: Diabolical points and boundary phenomena</title><author>Hsin, Po-Shen ; Kapustin, Anton ; Thorngren, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-bdba12f15f44e48b7b1c4235bd603b5bf2ab3f9f06ae8b50fe668da000cd799d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Couplings</topic><topic>Fermions</topic><topic>Field theory</topic><topic>Gauge theory</topic><topic>Geometric &amp; topological phases</topic><topic>Parameters</topic><topic>Phase behavior</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Quantum field theory</topic><topic>Quantum mechanics</topic><topic>Quantum phase transitions</topic><topic>Quantum theory</topic><topic>Symmetry protected topological states</topic><topic>System effectiveness</topic><topic>Topological field theories</topic><topic>Topological phases of matter</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsin, Po-Shen</creatorcontrib><creatorcontrib>Kapustin, Anton</creatorcontrib><creatorcontrib>Thorngren, Ryan</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsin, Po-Shen</au><au>Kapustin, Anton</au><au>Thorngren, Ryan</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Berry phase in quantum field theory: Diabolical points and boundary phenomena</atitle><jtitle>Physical review. B</jtitle><date>2020-12-09</date><risdate>2020</risdate><volume>102</volume><issue>24</issue><artnum>245113</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study aspects of the Berry phase in gapped many-body quantum systems by means of effective field theory. Once the parameters are promoted to space-time-dependent background fields, such adiabatic phases are described by Wess-Zumino-Witten (WZW) and similar terms. In the presence of symmetries, there are also quantized invariants capturing generalized Thouless pumps. Consideration of these terms provides constraints on the phase diagram of many-body systems, implying the existence of gapless points in the phase diagram, which are stable for topological reasons. We describe such diabolical points, realized by free fermions and gauge theories in various dimensions, which act as sources of "higher Berry curvature" and are protected by the quantization of the corresponding WZW terms or Thouless pump terms. These are analogous to Weyl nodes in a semimetal band structure. We argue that in the presence of a boundary, there are boundary diabolical points-parameter values where the boundary gap closes-which occupy arcs ending at the bulk diabolical points. Thus the boundary has an "anomaly in the space of couplings" in the sense of [C. Cordova, D. S. Freed, H. T. Lam, and N. Seiberg, SciPost Phys. 8, 001 (2020) and SciPost Phys. 8, 002 (2020)]. Consideration of the topological effective action for the parameters also provides some new checks on conjectured infrared dualities and deconfined quantum criticality in 2+1d.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.245113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-12, Vol.102 (24), Article 245113
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1762795
source American Physical Society Journals
subjects Couplings
Fermions
Field theory
Gauge theory
Geometric & topological phases
Parameters
Phase behavior
Phase diagrams
Phase transitions
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum field theory
Quantum mechanics
Quantum phase transitions
Quantum theory
Symmetry protected topological states
System effectiveness
Topological field theories
Topological phases of matter
Topology
title Berry phase in quantum field theory: Diabolical points and boundary phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Berry%20phase%20in%20quantum%20field%20theory:%20Diabolical%20points%20and%20boundary%20phenomena&rft.jtitle=Physical%20review.%20B&rft.au=Hsin,%20Po-Shen&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2020-12-09&rft.volume=102&rft.issue=24&rft.artnum=245113&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.245113&rft_dat=%3Cproquest_osti_%3E2480796862%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480796862&rft_id=info:pmid/&rfr_iscdi=true