Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics
The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, i...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2020-12, Vol.66 (12), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | AIChE journal |
container_volume | 66 |
creator | Fong, Kara D. Bergstrom, Helen K. McCloskey, Bryan D. Mandadapu, Kranthi K. |
description | The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green–Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux–flux time correlations. The relationship between the derived transport coefficients and those of the Stefan–Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify the application of the derived Green–Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements. |
doi_str_mv | 10.1002/aic.17091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1762210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462451791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-f4a98f65de68bc9353828a1995b1f262655a7dc16d0b1ab613e2304c165ecf453</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8sWLEI9ThxHuyqikelCjZlbTmOo7pK7NR2hPL3GMKW1WjunBnduQjdAnkEQuhKaPkIBangDC2AZUXCKsLO0YIQAkkU4BJdeX-MHS1KukBq74Txg3UBDwdlbK-MwNpg1SkZnO2moLC33Ri0Nf4Jv1ujTqPudO302ONwUK63zWREr6XHwjTYBxG0D1qKDvdKHoSJk2t00YrOq5u_ukSfL8_7zVuy-3jdbta7RGa0gKTNRFW2OWtUXtaySlla0lJAVbEaWprTnDFRNBLyhtQg6hxSRVOSRYEp2WYsXaK7-a6NDriXOkQH0hoTn-FQ5JQCidD9DA3OnkblAz_a0Znoi9MspxmDooJIPcyUdNZ7p1o-ON0LN3Eg_CdqHqPmv1FHdjWzX7pT0_8gX28388Y313iA4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462451791</pqid></control><display><type>article</type><title>Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics</title><source>Wiley Online Library All Journals</source><creator>Fong, Kara D. ; Bergstrom, Helen K. ; McCloskey, Bryan D. ; Mandadapu, Kranthi K.</creator><creatorcontrib>Fong, Kara D. ; Bergstrom, Helen K. ; McCloskey, Bryan D. ; Mandadapu, Kranthi K. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green–Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux–flux time correlations. The relationship between the derived transport coefficients and those of the Stefan–Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify the application of the derived Green–Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17091</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Chloride ions ; Continuum mechanics ; Dimethyl sulfoxide ; Electrochemical potential ; Electrochemistry ; Electrolytes ; Electromagnetism ; ENGINEERING ; Entropy ; Fluxes ; Lithium ; Maxwell's equations ; Molecular dynamics ; Nonequilibrium thermodynamics ; Potential gradient ; Statistical mechanics ; Thermodynamics ; thermodynamics/statistical ; transport ; Transport phenomena ; Transport properties</subject><ispartof>AIChE journal, 2020-12, Vol.66 (12), p.n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-f4a98f65de68bc9353828a1995b1f262655a7dc16d0b1ab613e2304c165ecf453</citedby><cites>FETCH-LOGICAL-c4271-f4a98f65de68bc9353828a1995b1f262655a7dc16d0b1ab613e2304c165ecf453</cites><orcidid>0000-0002-0711-097X ; 0000-0002-1209-6113 ; 000000020711097X ; 0000000212096113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1762210$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fong, Kara D.</creatorcontrib><creatorcontrib>Bergstrom, Helen K.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Mandadapu, Kranthi K.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics</title><title>AIChE journal</title><description>The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green–Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux–flux time correlations. The relationship between the derived transport coefficients and those of the Stefan–Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify the application of the derived Green–Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements.</description><subject>Chloride ions</subject><subject>Continuum mechanics</subject><subject>Dimethyl sulfoxide</subject><subject>Electrochemical potential</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electromagnetism</subject><subject>ENGINEERING</subject><subject>Entropy</subject><subject>Fluxes</subject><subject>Lithium</subject><subject>Maxwell's equations</subject><subject>Molecular dynamics</subject><subject>Nonequilibrium thermodynamics</subject><subject>Potential gradient</subject><subject>Statistical mechanics</subject><subject>Thermodynamics</subject><subject>thermodynamics/statistical</subject><subject>transport</subject><subject>Transport phenomena</subject><subject>Transport properties</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8sWLEI9ThxHuyqikelCjZlbTmOo7pK7NR2hPL3GMKW1WjunBnduQjdAnkEQuhKaPkIBangDC2AZUXCKsLO0YIQAkkU4BJdeX-MHS1KukBq74Txg3UBDwdlbK-MwNpg1SkZnO2moLC33Ri0Nf4Jv1ujTqPudO302ONwUK63zWREr6XHwjTYBxG0D1qKDvdKHoSJk2t00YrOq5u_ukSfL8_7zVuy-3jdbta7RGa0gKTNRFW2OWtUXtaySlla0lJAVbEaWprTnDFRNBLyhtQg6hxSRVOSRYEp2WYsXaK7-a6NDriXOkQH0hoTn-FQ5JQCidD9DA3OnkblAz_a0Znoi9MspxmDooJIPcyUdNZ7p1o-ON0LN3Eg_CdqHqPmv1FHdjWzX7pT0_8gX28388Y313iA4w</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Fong, Kara D.</creator><creator>Bergstrom, Helen K.</creator><creator>McCloskey, Bryan D.</creator><creator>Mandadapu, Kranthi K.</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0711-097X</orcidid><orcidid>https://orcid.org/0000-0002-1209-6113</orcidid><orcidid>https://orcid.org/000000020711097X</orcidid><orcidid>https://orcid.org/0000000212096113</orcidid></search><sort><creationdate>202012</creationdate><title>Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics</title><author>Fong, Kara D. ; Bergstrom, Helen K. ; McCloskey, Bryan D. ; Mandadapu, Kranthi K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-f4a98f65de68bc9353828a1995b1f262655a7dc16d0b1ab613e2304c165ecf453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chloride ions</topic><topic>Continuum mechanics</topic><topic>Dimethyl sulfoxide</topic><topic>Electrochemical potential</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electromagnetism</topic><topic>ENGINEERING</topic><topic>Entropy</topic><topic>Fluxes</topic><topic>Lithium</topic><topic>Maxwell's equations</topic><topic>Molecular dynamics</topic><topic>Nonequilibrium thermodynamics</topic><topic>Potential gradient</topic><topic>Statistical mechanics</topic><topic>Thermodynamics</topic><topic>thermodynamics/statistical</topic><topic>transport</topic><topic>Transport phenomena</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fong, Kara D.</creatorcontrib><creatorcontrib>Bergstrom, Helen K.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Mandadapu, Kranthi K.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fong, Kara D.</au><au>Bergstrom, Helen K.</au><au>McCloskey, Bryan D.</au><au>Mandadapu, Kranthi K.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics</atitle><jtitle>AIChE journal</jtitle><date>2020-12</date><risdate>2020</risdate><volume>66</volume><issue>12</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green–Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux–flux time correlations. The relationship between the derived transport coefficients and those of the Stefan–Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify the application of the derived Green–Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.17091</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-0711-097X</orcidid><orcidid>https://orcid.org/0000-0002-1209-6113</orcidid><orcidid>https://orcid.org/000000020711097X</orcidid><orcidid>https://orcid.org/0000000212096113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2020-12, Vol.66 (12), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_osti_scitechconnect_1762210 |
source | Wiley Online Library All Journals |
subjects | Chloride ions Continuum mechanics Dimethyl sulfoxide Electrochemical potential Electrochemistry Electrolytes Electromagnetism ENGINEERING Entropy Fluxes Lithium Maxwell's equations Molecular dynamics Nonequilibrium thermodynamics Potential gradient Statistical mechanics Thermodynamics thermodynamics/statistical transport Transport phenomena Transport properties |
title | Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20phenomena%20in%20electrolyte%20solutions:%20Nonequilibrium%20thermodynamics%20and%20statistical%20mechanics&rft.jtitle=AIChE%20journal&rft.au=Fong,%20Kara%20D.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-12&rft.volume=66&rft.issue=12&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17091&rft_dat=%3Cproquest_osti_%3E2462451791%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462451791&rft_id=info:pmid/&rfr_iscdi=true |