Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics

The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2020-12, Vol.66 (12), p.n/a
Hauptverfasser: Fong, Kara D., Bergstrom, Helen K., McCloskey, Bryan D., Mandadapu, Kranthi K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title AIChE journal
container_volume 66
creator Fong, Kara D.
Bergstrom, Helen K.
McCloskey, Bryan D.
Mandadapu, Kranthi K.
description The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green–Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux–flux time correlations. The relationship between the derived transport coefficients and those of the Stefan–Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify the application of the derived Green–Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements.
doi_str_mv 10.1002/aic.17091
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1762210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462451791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-f4a98f65de68bc9353828a1995b1f262655a7dc16d0b1ab613e2304c165ecf453</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8sWLEI9ThxHuyqikelCjZlbTmOo7pK7NR2hPL3GMKW1WjunBnduQjdAnkEQuhKaPkIBangDC2AZUXCKsLO0YIQAkkU4BJdeX-MHS1KukBq74Txg3UBDwdlbK-MwNpg1SkZnO2moLC33Ri0Nf4Jv1ujTqPudO302ONwUK63zWREr6XHwjTYBxG0D1qKDvdKHoSJk2t00YrOq5u_ukSfL8_7zVuy-3jdbta7RGa0gKTNRFW2OWtUXtaySlla0lJAVbEaWprTnDFRNBLyhtQg6hxSRVOSRYEp2WYsXaK7-a6NDriXOkQH0hoTn-FQ5JQCidD9DA3OnkblAz_a0Znoi9MspxmDooJIPcyUdNZ7p1o-ON0LN3Eg_CdqHqPmv1FHdjWzX7pT0_8gX28388Y313iA4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462451791</pqid></control><display><type>article</type><title>Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics</title><source>Wiley Online Library All Journals</source><creator>Fong, Kara D. ; Bergstrom, Helen K. ; McCloskey, Bryan D. ; Mandadapu, Kranthi K.</creator><creatorcontrib>Fong, Kara D. ; Bergstrom, Helen K. ; McCloskey, Bryan D. ; Mandadapu, Kranthi K. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green–Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux–flux time correlations. The relationship between the derived transport coefficients and those of the Stefan–Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify the application of the derived Green–Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17091</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Chloride ions ; Continuum mechanics ; Dimethyl sulfoxide ; Electrochemical potential ; Electrochemistry ; Electrolytes ; Electromagnetism ; ENGINEERING ; Entropy ; Fluxes ; Lithium ; Maxwell's equations ; Molecular dynamics ; Nonequilibrium thermodynamics ; Potential gradient ; Statistical mechanics ; Thermodynamics ; thermodynamics/statistical ; transport ; Transport phenomena ; Transport properties</subject><ispartof>AIChE journal, 2020-12, Vol.66 (12), p.n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-f4a98f65de68bc9353828a1995b1f262655a7dc16d0b1ab613e2304c165ecf453</citedby><cites>FETCH-LOGICAL-c4271-f4a98f65de68bc9353828a1995b1f262655a7dc16d0b1ab613e2304c165ecf453</cites><orcidid>0000-0002-0711-097X ; 0000-0002-1209-6113 ; 000000020711097X ; 0000000212096113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1762210$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fong, Kara D.</creatorcontrib><creatorcontrib>Bergstrom, Helen K.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Mandadapu, Kranthi K.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics</title><title>AIChE journal</title><description>The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green–Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux–flux time correlations. The relationship between the derived transport coefficients and those of the Stefan–Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify the application of the derived Green–Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements.</description><subject>Chloride ions</subject><subject>Continuum mechanics</subject><subject>Dimethyl sulfoxide</subject><subject>Electrochemical potential</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electromagnetism</subject><subject>ENGINEERING</subject><subject>Entropy</subject><subject>Fluxes</subject><subject>Lithium</subject><subject>Maxwell's equations</subject><subject>Molecular dynamics</subject><subject>Nonequilibrium thermodynamics</subject><subject>Potential gradient</subject><subject>Statistical mechanics</subject><subject>Thermodynamics</subject><subject>thermodynamics/statistical</subject><subject>transport</subject><subject>Transport phenomena</subject><subject>Transport properties</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8sWLEI9ThxHuyqikelCjZlbTmOo7pK7NR2hPL3GMKW1WjunBnduQjdAnkEQuhKaPkIBangDC2AZUXCKsLO0YIQAkkU4BJdeX-MHS1KukBq74Txg3UBDwdlbK-MwNpg1SkZnO2moLC33Ri0Nf4Jv1ujTqPudO302ONwUK63zWREr6XHwjTYBxG0D1qKDvdKHoSJk2t00YrOq5u_ukSfL8_7zVuy-3jdbta7RGa0gKTNRFW2OWtUXtaySlla0lJAVbEaWprTnDFRNBLyhtQg6hxSRVOSRYEp2WYsXaK7-a6NDriXOkQH0hoTn-FQ5JQCidD9DA3OnkblAz_a0Znoi9MspxmDooJIPcyUdNZ7p1o-ON0LN3Eg_CdqHqPmv1FHdjWzX7pT0_8gX28388Y313iA4w</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Fong, Kara D.</creator><creator>Bergstrom, Helen K.</creator><creator>McCloskey, Bryan D.</creator><creator>Mandadapu, Kranthi K.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0711-097X</orcidid><orcidid>https://orcid.org/0000-0002-1209-6113</orcidid><orcidid>https://orcid.org/000000020711097X</orcidid><orcidid>https://orcid.org/0000000212096113</orcidid></search><sort><creationdate>202012</creationdate><title>Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics</title><author>Fong, Kara D. ; Bergstrom, Helen K. ; McCloskey, Bryan D. ; Mandadapu, Kranthi K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-f4a98f65de68bc9353828a1995b1f262655a7dc16d0b1ab613e2304c165ecf453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chloride ions</topic><topic>Continuum mechanics</topic><topic>Dimethyl sulfoxide</topic><topic>Electrochemical potential</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electromagnetism</topic><topic>ENGINEERING</topic><topic>Entropy</topic><topic>Fluxes</topic><topic>Lithium</topic><topic>Maxwell's equations</topic><topic>Molecular dynamics</topic><topic>Nonequilibrium thermodynamics</topic><topic>Potential gradient</topic><topic>Statistical mechanics</topic><topic>Thermodynamics</topic><topic>thermodynamics/statistical</topic><topic>transport</topic><topic>Transport phenomena</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fong, Kara D.</creatorcontrib><creatorcontrib>Bergstrom, Helen K.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Mandadapu, Kranthi K.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fong, Kara D.</au><au>Bergstrom, Helen K.</au><au>McCloskey, Bryan D.</au><au>Mandadapu, Kranthi K.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics</atitle><jtitle>AIChE journal</jtitle><date>2020-12</date><risdate>2020</risdate><volume>66</volume><issue>12</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The theory of transport phenomena in multicomponent electrolyte solutions is presented here through the integration of continuum mechanics, electromagnetism, and nonequilibrium thermodynamics. The governing equations of irreversible thermodynamics, including balance laws, Maxwell's equations, internal entropy production, and linear laws relating the thermodynamic forces and fluxes, are derived. Green–Kubo relations for the transport coefficients connecting electrochemical potential gradients and diffusive fluxes are obtained in terms of the flux–flux time correlations. The relationship between the derived transport coefficients and those of the Stefan–Maxwell and infinitely dilute frameworks are presented, and the connection between the transport matrix and experimentally measurable quantities is described. To exemplify the application of the derived Green–Kubo relations in molecular simulations, the matrix of transport coefficients for lithium and chloride ions in dimethyl sulfoxide is computed using classical molecular dynamics and compared with experimental measurements.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.17091</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-0711-097X</orcidid><orcidid>https://orcid.org/0000-0002-1209-6113</orcidid><orcidid>https://orcid.org/000000020711097X</orcidid><orcidid>https://orcid.org/0000000212096113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2020-12, Vol.66 (12), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_osti_scitechconnect_1762210
source Wiley Online Library All Journals
subjects Chloride ions
Continuum mechanics
Dimethyl sulfoxide
Electrochemical potential
Electrochemistry
Electrolytes
Electromagnetism
ENGINEERING
Entropy
Fluxes
Lithium
Maxwell's equations
Molecular dynamics
Nonequilibrium thermodynamics
Potential gradient
Statistical mechanics
Thermodynamics
thermodynamics/statistical
transport
Transport phenomena
Transport properties
title Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics and statistical mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20phenomena%20in%20electrolyte%20solutions:%20Nonequilibrium%20thermodynamics%20and%20statistical%20mechanics&rft.jtitle=AIChE%20journal&rft.au=Fong,%20Kara%20D.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-12&rft.volume=66&rft.issue=12&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17091&rft_dat=%3Cproquest_osti_%3E2462451791%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462451791&rft_id=info:pmid/&rfr_iscdi=true