Influence of spatial dispersion on spectral tuning of phonon-polaritons

The field of nanophotonics has long sought to identify mechanisms to realize dynamical control of optical modes. In most approaches, the magnitude of tuning is dependent upon the degree to which the optical permittivity is malleable upon some material change, such as carrier concentration. Here, thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-11, Vol.100 (20), p.1, Article 205419
Hauptverfasser: Beechem, Thomas E., Saltonstall, Christopher B., Gilbert, Tristan, Matson, Joseph, Ugwu, Fabian, Kasica, Richard, Bezares, Francisco J., Valentine, Jason, Caldwell, Joshua D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 1
container_title Physical review. B
container_volume 100
creator Beechem, Thomas E.
Saltonstall, Christopher B.
Gilbert, Tristan
Matson, Joseph
Ugwu, Fabian
Kasica, Richard
Bezares, Francisco J.
Valentine, Jason
Caldwell, Joshua D.
description The field of nanophotonics has long sought to identify mechanisms to realize dynamical control of optical modes. In most approaches, the magnitude of tuning is dependent upon the degree to which the optical permittivity is malleable upon some material change, such as carrier concentration. Here, through a multiwavelength Raman spectroscopic examination of 4H-SiC nanopillars, momentum is identified as an alternative means to enhance spectral tunability of nanophotonic modes, owing to the spatial dispersion implicit in the infrared (IR) optical permittivity of polar semiconductors. Experimentally, this is deduced through the observation of a "forbidden" Raman mode at ≈780cm−1 and the emergence of the surface-optical phonon polariton at ≈950 cm−1, which evolved with intensities dependent upon the nanopillar diameter and the wavelength of the incident light. The evolution of these modes is accompanied by a redshift and spectral narrowing of the longitudinal-optical plasmon coupled (LOPC) mode exhibiting a similar wavelength and diameter dependence. Mie resonances, identified using ultraviolet-visible spectroscopy and excited by the visible laser excitation of the Raman experiment, acted to vary the momentum sampled during the Raman experiment leading to these spectral dependencies. This was deduced by fitting the Raman response accounting for both the presence of the surface phonon and the overdamped LOPC mode under the Lindhard-Mermin approximation. This fitting not only explains the Raman response, but also clearly exhibits the spatially disperse permittivity of the SiC, which is shown to have a momentum-dependent sensitivity to carrier concentration. Such sensitivity, in turn, highlights the potential of spatial dispersion as a means to accentuate the performance of active IR nanophotonic approaches employing phonon polaritons.
doi_str_mv 10.1103/PhysRevB.100.205419
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1760356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323058808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-9d69bff4d1f1f54215aefd5c4df66c5f2d740f186308b713a1ad23fd8df23f6d3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOHSfwJeiz503TZM2jzp0DgaK6HPo8sdl1KQmqbBvb0ZVuHAOhx-Xw0HoCsMCYyC3L7tDfNXf9wsMsKiA1pifoFlVM15yzvjpv6dwjuYx7gEAM-AN8BlarZ3pR-2kLrwp4tAl2_WFsnHQIVrvinzZyxRynEZn3ccRHHbeeVcOvu-CTd7FS3Rmuj7q-a9eoPfHh7flU7l5Xq2Xd5tSEs5TyRXjW2NqhQ02tK4w7bRRVNbKMCapqVRTg8EtI9BuG0w63KmKGNUqk4UpcoGup78-JiuitEnLnfTO5YoCNwwIZRm6maAh-K9RxyT2fgwu9xIVqQjQtoU2U2SiZPAxBm3EEOxnFw4CgzguK_6WzQGIaVnyAyaDbi8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323058808</pqid></control><display><type>article</type><title>Influence of spatial dispersion on spectral tuning of phonon-polaritons</title><source>American Physical Society Journals</source><creator>Beechem, Thomas E. ; Saltonstall, Christopher B. ; Gilbert, Tristan ; Matson, Joseph ; Ugwu, Fabian ; Kasica, Richard ; Bezares, Francisco J. ; Valentine, Jason ; Caldwell, Joshua D.</creator><creatorcontrib>Beechem, Thomas E. ; Saltonstall, Christopher B. ; Gilbert, Tristan ; Matson, Joseph ; Ugwu, Fabian ; Kasica, Richard ; Bezares, Francisco J. ; Valentine, Jason ; Caldwell, Joshua D. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The field of nanophotonics has long sought to identify mechanisms to realize dynamical control of optical modes. In most approaches, the magnitude of tuning is dependent upon the degree to which the optical permittivity is malleable upon some material change, such as carrier concentration. Here, through a multiwavelength Raman spectroscopic examination of 4H-SiC nanopillars, momentum is identified as an alternative means to enhance spectral tunability of nanophotonic modes, owing to the spatial dispersion implicit in the infrared (IR) optical permittivity of polar semiconductors. Experimentally, this is deduced through the observation of a "forbidden" Raman mode at ≈780cm−1 and the emergence of the surface-optical phonon polariton at ≈950 cm−1, which evolved with intensities dependent upon the nanopillar diameter and the wavelength of the incident light. The evolution of these modes is accompanied by a redshift and spectral narrowing of the longitudinal-optical plasmon coupled (LOPC) mode exhibiting a similar wavelength and diameter dependence. Mie resonances, identified using ultraviolet-visible spectroscopy and excited by the visible laser excitation of the Raman experiment, acted to vary the momentum sampled during the Raman experiment leading to these spectral dependencies. This was deduced by fitting the Raman response accounting for both the presence of the surface phonon and the overdamped LOPC mode under the Lindhard-Mermin approximation. This fitting not only explains the Raman response, but also clearly exhibits the spatially disperse permittivity of the SiC, which is shown to have a momentum-dependent sensitivity to carrier concentration. Such sensitivity, in turn, highlights the potential of spatial dispersion as a means to accentuate the performance of active IR nanophotonic approaches employing phonon polaritons.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.205419</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Carrier density ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Coupled modes ; Evolution ; Excitation spectra ; Incident light ; Momentum ; Nanophotonics ; Permittivity ; phonon polariton ; Phonons ; Polaritons ; Raman spectroscopy ; Red shift ; Sensitivity ; Tuning</subject><ispartof>Physical review. B, 2019-11, Vol.100 (20), p.1, Article 205419</ispartof><rights>Copyright American Physical Society Nov 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-9d69bff4d1f1f54215aefd5c4df66c5f2d740f186308b713a1ad23fd8df23f6d3</citedby><cites>FETCH-LOGICAL-c399t-9d69bff4d1f1f54215aefd5c4df66c5f2d740f186308b713a1ad23fd8df23f6d3</cites><orcidid>0000-0002-7536-0719 ; 0000000275360719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1760356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beechem, Thomas E.</creatorcontrib><creatorcontrib>Saltonstall, Christopher B.</creatorcontrib><creatorcontrib>Gilbert, Tristan</creatorcontrib><creatorcontrib>Matson, Joseph</creatorcontrib><creatorcontrib>Ugwu, Fabian</creatorcontrib><creatorcontrib>Kasica, Richard</creatorcontrib><creatorcontrib>Bezares, Francisco J.</creatorcontrib><creatorcontrib>Valentine, Jason</creatorcontrib><creatorcontrib>Caldwell, Joshua D.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Influence of spatial dispersion on spectral tuning of phonon-polaritons</title><title>Physical review. B</title><description>The field of nanophotonics has long sought to identify mechanisms to realize dynamical control of optical modes. In most approaches, the magnitude of tuning is dependent upon the degree to which the optical permittivity is malleable upon some material change, such as carrier concentration. Here, through a multiwavelength Raman spectroscopic examination of 4H-SiC nanopillars, momentum is identified as an alternative means to enhance spectral tunability of nanophotonic modes, owing to the spatial dispersion implicit in the infrared (IR) optical permittivity of polar semiconductors. Experimentally, this is deduced through the observation of a "forbidden" Raman mode at ≈780cm−1 and the emergence of the surface-optical phonon polariton at ≈950 cm−1, which evolved with intensities dependent upon the nanopillar diameter and the wavelength of the incident light. The evolution of these modes is accompanied by a redshift and spectral narrowing of the longitudinal-optical plasmon coupled (LOPC) mode exhibiting a similar wavelength and diameter dependence. Mie resonances, identified using ultraviolet-visible spectroscopy and excited by the visible laser excitation of the Raman experiment, acted to vary the momentum sampled during the Raman experiment leading to these spectral dependencies. This was deduced by fitting the Raman response accounting for both the presence of the surface phonon and the overdamped LOPC mode under the Lindhard-Mermin approximation. This fitting not only explains the Raman response, but also clearly exhibits the spatially disperse permittivity of the SiC, which is shown to have a momentum-dependent sensitivity to carrier concentration. Such sensitivity, in turn, highlights the potential of spatial dispersion as a means to accentuate the performance of active IR nanophotonic approaches employing phonon polaritons.</description><subject>Carrier density</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Coupled modes</subject><subject>Evolution</subject><subject>Excitation spectra</subject><subject>Incident light</subject><subject>Momentum</subject><subject>Nanophotonics</subject><subject>Permittivity</subject><subject>phonon polariton</subject><subject>Phonons</subject><subject>Polaritons</subject><subject>Raman spectroscopy</subject><subject>Red shift</subject><subject>Sensitivity</subject><subject>Tuning</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOHSfwJeiz503TZM2jzp0DgaK6HPo8sdl1KQmqbBvb0ZVuHAOhx-Xw0HoCsMCYyC3L7tDfNXf9wsMsKiA1pifoFlVM15yzvjpv6dwjuYx7gEAM-AN8BlarZ3pR-2kLrwp4tAl2_WFsnHQIVrvinzZyxRynEZn3ccRHHbeeVcOvu-CTd7FS3Rmuj7q-a9eoPfHh7flU7l5Xq2Xd5tSEs5TyRXjW2NqhQ02tK4w7bRRVNbKMCapqVRTg8EtI9BuG0w63KmKGNUqk4UpcoGup78-JiuitEnLnfTO5YoCNwwIZRm6maAh-K9RxyT2fgwu9xIVqQjQtoU2U2SiZPAxBm3EEOxnFw4CgzguK_6WzQGIaVnyAyaDbi8</recordid><startdate>20191120</startdate><enddate>20191120</enddate><creator>Beechem, Thomas E.</creator><creator>Saltonstall, Christopher B.</creator><creator>Gilbert, Tristan</creator><creator>Matson, Joseph</creator><creator>Ugwu, Fabian</creator><creator>Kasica, Richard</creator><creator>Bezares, Francisco J.</creator><creator>Valentine, Jason</creator><creator>Caldwell, Joshua D.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7536-0719</orcidid><orcidid>https://orcid.org/0000000275360719</orcidid></search><sort><creationdate>20191120</creationdate><title>Influence of spatial dispersion on spectral tuning of phonon-polaritons</title><author>Beechem, Thomas E. ; Saltonstall, Christopher B. ; Gilbert, Tristan ; Matson, Joseph ; Ugwu, Fabian ; Kasica, Richard ; Bezares, Francisco J. ; Valentine, Jason ; Caldwell, Joshua D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-9d69bff4d1f1f54215aefd5c4df66c5f2d740f186308b713a1ad23fd8df23f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carrier density</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Coupled modes</topic><topic>Evolution</topic><topic>Excitation spectra</topic><topic>Incident light</topic><topic>Momentum</topic><topic>Nanophotonics</topic><topic>Permittivity</topic><topic>phonon polariton</topic><topic>Phonons</topic><topic>Polaritons</topic><topic>Raman spectroscopy</topic><topic>Red shift</topic><topic>Sensitivity</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beechem, Thomas E.</creatorcontrib><creatorcontrib>Saltonstall, Christopher B.</creatorcontrib><creatorcontrib>Gilbert, Tristan</creatorcontrib><creatorcontrib>Matson, Joseph</creatorcontrib><creatorcontrib>Ugwu, Fabian</creatorcontrib><creatorcontrib>Kasica, Richard</creatorcontrib><creatorcontrib>Bezares, Francisco J.</creatorcontrib><creatorcontrib>Valentine, Jason</creatorcontrib><creatorcontrib>Caldwell, Joshua D.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beechem, Thomas E.</au><au>Saltonstall, Christopher B.</au><au>Gilbert, Tristan</au><au>Matson, Joseph</au><au>Ugwu, Fabian</au><au>Kasica, Richard</au><au>Bezares, Francisco J.</au><au>Valentine, Jason</au><au>Caldwell, Joshua D.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of spatial dispersion on spectral tuning of phonon-polaritons</atitle><jtitle>Physical review. B</jtitle><date>2019-11-20</date><risdate>2019</risdate><volume>100</volume><issue>20</issue><spage>1</spage><pages>1-</pages><artnum>205419</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The field of nanophotonics has long sought to identify mechanisms to realize dynamical control of optical modes. In most approaches, the magnitude of tuning is dependent upon the degree to which the optical permittivity is malleable upon some material change, such as carrier concentration. Here, through a multiwavelength Raman spectroscopic examination of 4H-SiC nanopillars, momentum is identified as an alternative means to enhance spectral tunability of nanophotonic modes, owing to the spatial dispersion implicit in the infrared (IR) optical permittivity of polar semiconductors. Experimentally, this is deduced through the observation of a "forbidden" Raman mode at ≈780cm−1 and the emergence of the surface-optical phonon polariton at ≈950 cm−1, which evolved with intensities dependent upon the nanopillar diameter and the wavelength of the incident light. The evolution of these modes is accompanied by a redshift and spectral narrowing of the longitudinal-optical plasmon coupled (LOPC) mode exhibiting a similar wavelength and diameter dependence. Mie resonances, identified using ultraviolet-visible spectroscopy and excited by the visible laser excitation of the Raman experiment, acted to vary the momentum sampled during the Raman experiment leading to these spectral dependencies. This was deduced by fitting the Raman response accounting for both the presence of the surface phonon and the overdamped LOPC mode under the Lindhard-Mermin approximation. This fitting not only explains the Raman response, but also clearly exhibits the spatially disperse permittivity of the SiC, which is shown to have a momentum-dependent sensitivity to carrier concentration. Such sensitivity, in turn, highlights the potential of spatial dispersion as a means to accentuate the performance of active IR nanophotonic approaches employing phonon polaritons.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.205419</doi><orcidid>https://orcid.org/0000-0002-7536-0719</orcidid><orcidid>https://orcid.org/0000000275360719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-11, Vol.100 (20), p.1, Article 205419
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1760356
source American Physical Society Journals
subjects Carrier density
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Coupled modes
Evolution
Excitation spectra
Incident light
Momentum
Nanophotonics
Permittivity
phonon polariton
Phonons
Polaritons
Raman spectroscopy
Red shift
Sensitivity
Tuning
title Influence of spatial dispersion on spectral tuning of phonon-polaritons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20spatial%20dispersion%20on%20spectral%20tuning%20of%20phonon-polaritons&rft.jtitle=Physical%20review.%20B&rft.au=Beechem,%20Thomas%20E.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2019-11-20&rft.volume=100&rft.issue=20&rft.spage=1&rft.pages=1-&rft.artnum=205419&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.205419&rft_dat=%3Cproquest_osti_%3E2323058808%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323058808&rft_id=info:pmid/&rfr_iscdi=true