Acid Exfoliation of Imine-linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films

Covalent organic frameworks (COFs) are highly modular porous crystalline polymers that are of interest for applications such as charge-storage devices, nanofiltration membranes, and optoelectronic devices. COFs are typically synthesized as microcrystalline powders, which limits their performance in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2019-12, Vol.132 (13)
Hauptverfasser: Burke, David W., Sun, Chao, Castano, Ioannina, Flanders, Nathan C., Evans, Austin M., Vitaku, Edon, McLeod, David C., Lambeth, Robert H., Chen, Lin X., Gianneschi, Nathan C., Dichtel, William R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covalent organic frameworks (COFs) are highly modular porous crystalline polymers that are of interest for applications such as charge-storage devices, nanofiltration membranes, and optoelectronic devices. COFs are typically synthesized as microcrystalline powders, which limits their performance in these applications, and their limited solubility precludes large-scale processing into more useful morphologies and devices. We report a general, scalable method to exfoliate two-dimensional imine-linked COF powders by temporarily protonating their linkages. In this work, the resulting suspensions were cast into continuous crystalline COF films up to 10 cm in diameter, with thicknesses ranging from 50 nm to 20 μm depending on the suspension composition, concentration, and casting protocol. Furthermore, we demonstrate that the film fabrication process proceeds through a partial depolymerization/repolymerization mechanism, providing mechanically robust films that can be easily separated from their substrates.
ISSN:0044-8249
1521-3757