Crossover from hydrogen to chemical bonding
Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to u...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-01, Vol.371 (6525), p.160-164 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 6525 |
container_start_page | 160 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 371 |
creator | Dereka, Bogdan Yu, Qi Lewis, Nicholas H C Carpenter, William B Bowman, Joel M Tokmakoff, Andrei |
description | Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F]
ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins. |
doi_str_mv | 10.1126/science.abe1951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1756131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476190142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-912acc75817d875f9b3c8c32f8b76007103d6396c3bd31915f52d9893c93f0403</originalsourceid><addsrcrecordid>eNpd0M9LwzAUwPEgipvTszcpehGkW15f0zRHGf6CgRc9hzZNt4420aQV9t-buerBUw75vAfvS8gl0DlAki28arRRel6UGgSDIzIFKlgsEorHZEopZnFOOZuQM--3lIY_gadkgphCmgCfkruls97bL-2i2tku2uwqZ9faRL2N1EZ3jSraqLSmasz6nJzURev1xfjOyPvjw9vyOV69Pr0s71exSiHvYwFJoRRnOfAq56wWJapcYVLnJc8o5UCxylBkCssKQQCrWVKJXKASWNOU4oxcH_Za3zcynNhrtVHWGK16CZxlgBDQ7QF9OPs5aN_LrvFKt21htB28TFKeMZYLEIHe_KNbOzgTTvhRIGiIEdTioNS-iNO1_HBNV7idBCr3seUYW46xw8TVuHcoO139-d-6-A1Cu3k8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476190142</pqid></control><display><type>article</type><title>Crossover from hydrogen to chemical bonding</title><source>American Association for the Advancement of Science</source><creator>Dereka, Bogdan ; Yu, Qi ; Lewis, Nicholas H C ; Carpenter, William B ; Bowman, Joel M ; Tokmakoff, Andrei</creator><creatorcontrib>Dereka, Bogdan ; Yu, Qi ; Lewis, Nicholas H C ; Carpenter, William B ; Bowman, Joel M ; Tokmakoff, Andrei ; Univ. of Chicago, IL (United States)</creatorcontrib><description>Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F]
ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abe1951</identifier><identifier>PMID: 33414217</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Aqueous solutions ; Bonding strength ; Chemical bonds ; Chemistry ; Crossovers ; Electrostatic properties ; Experimental methods ; Hunger ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Infrared spectroscopy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Literary Devices ; Quantum chemistry ; Spectroscopy ; Spectrum analysis</subject><ispartof>Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6525), p.160-164</ispartof><rights>Copyright © 2021, American Association for the Advancement of Science.</rights><rights>Copyright © 2021, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-912acc75817d875f9b3c8c32f8b76007103d6396c3bd31915f52d9893c93f0403</citedby><cites>FETCH-LOGICAL-c418t-912acc75817d875f9b3c8c32f8b76007103d6396c3bd31915f52d9893c93f0403</cites><orcidid>0000-0002-2030-0671 ; 0000-0003-2895-7915 ; 0000-0002-2554-0199 ; 0000-0001-9692-2672 ; 0000-0002-2434-8744 ; 0000000225540199 ; 0000000224348744 ; 0000000328957915 ; 0000000196922672 ; 0000000220300671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33414217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1756131$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dereka, Bogdan</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Lewis, Nicholas H C</creatorcontrib><creatorcontrib>Carpenter, William B</creatorcontrib><creatorcontrib>Bowman, Joel M</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><title>Crossover from hydrogen to chemical bonding</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F]
ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins.</description><subject>Aqueous solutions</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Crossovers</subject><subject>Electrostatic properties</subject><subject>Experimental methods</subject><subject>Hunger</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Infrared spectroscopy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Literary Devices</subject><subject>Quantum chemistry</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUwPEgipvTszcpehGkW15f0zRHGf6CgRc9hzZNt4420aQV9t-buerBUw75vAfvS8gl0DlAki28arRRel6UGgSDIzIFKlgsEorHZEopZnFOOZuQM--3lIY_gadkgphCmgCfkruls97bL-2i2tku2uwqZ9faRL2N1EZ3jSraqLSmasz6nJzURev1xfjOyPvjw9vyOV69Pr0s71exSiHvYwFJoRRnOfAq56wWJapcYVLnJc8o5UCxylBkCssKQQCrWVKJXKASWNOU4oxcH_Za3zcynNhrtVHWGK16CZxlgBDQ7QF9OPs5aN_LrvFKt21htB28TFKeMZYLEIHe_KNbOzgTTvhRIGiIEdTioNS-iNO1_HBNV7idBCr3seUYW46xw8TVuHcoO139-d-6-A1Cu3k8</recordid><startdate>20210108</startdate><enddate>20210108</enddate><creator>Dereka, Bogdan</creator><creator>Yu, Qi</creator><creator>Lewis, Nicholas H C</creator><creator>Carpenter, William B</creator><creator>Bowman, Joel M</creator><creator>Tokmakoff, Andrei</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2030-0671</orcidid><orcidid>https://orcid.org/0000-0003-2895-7915</orcidid><orcidid>https://orcid.org/0000-0002-2554-0199</orcidid><orcidid>https://orcid.org/0000-0001-9692-2672</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000000225540199</orcidid><orcidid>https://orcid.org/0000000224348744</orcidid><orcidid>https://orcid.org/0000000328957915</orcidid><orcidid>https://orcid.org/0000000196922672</orcidid><orcidid>https://orcid.org/0000000220300671</orcidid></search><sort><creationdate>20210108</creationdate><title>Crossover from hydrogen to chemical bonding</title><author>Dereka, Bogdan ; Yu, Qi ; Lewis, Nicholas H C ; Carpenter, William B ; Bowman, Joel M ; Tokmakoff, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-912acc75817d875f9b3c8c32f8b76007103d6396c3bd31915f52d9893c93f0403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous solutions</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Crossovers</topic><topic>Electrostatic properties</topic><topic>Experimental methods</topic><topic>Hunger</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Infrared spectroscopy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Literary Devices</topic><topic>Quantum chemistry</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dereka, Bogdan</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Lewis, Nicholas H C</creatorcontrib><creatorcontrib>Carpenter, William B</creatorcontrib><creatorcontrib>Bowman, Joel M</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dereka, Bogdan</au><au>Yu, Qi</au><au>Lewis, Nicholas H C</au><au>Carpenter, William B</au><au>Bowman, Joel M</au><au>Tokmakoff, Andrei</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossover from hydrogen to chemical bonding</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-01-08</date><risdate>2021</risdate><volume>371</volume><issue>6525</issue><spage>160</spage><epage>164</epage><pages>160-164</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F]
ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33414217</pmid><doi>10.1126/science.abe1951</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2030-0671</orcidid><orcidid>https://orcid.org/0000-0003-2895-7915</orcidid><orcidid>https://orcid.org/0000-0002-2554-0199</orcidid><orcidid>https://orcid.org/0000-0001-9692-2672</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000000225540199</orcidid><orcidid>https://orcid.org/0000000224348744</orcidid><orcidid>https://orcid.org/0000000328957915</orcidid><orcidid>https://orcid.org/0000000196922672</orcidid><orcidid>https://orcid.org/0000000220300671</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6525), p.160-164 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1756131 |
source | American Association for the Advancement of Science |
subjects | Aqueous solutions Bonding strength Chemical bonds Chemistry Crossovers Electrostatic properties Experimental methods Hunger Hydrogen Hydrogen bonding Hydrogen bonds Infrared spectroscopy INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Literary Devices Quantum chemistry Spectroscopy Spectrum analysis |
title | Crossover from hydrogen to chemical bonding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossover%20from%20hydrogen%20to%20chemical%20bonding&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Dereka,%20Bogdan&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2021-01-08&rft.volume=371&rft.issue=6525&rft.spage=160&rft.epage=164&rft.pages=160-164&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abe1951&rft_dat=%3Cproquest_osti_%3E2476190142%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476190142&rft_id=info:pmid/33414217&rfr_iscdi=true |