Crossover from hydrogen to chemical bonding

Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-01, Vol.371 (6525), p.160-164
Hauptverfasser: Dereka, Bogdan, Yu, Qi, Lewis, Nicholas H C, Carpenter, William B, Bowman, Joel M, Tokmakoff, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 6525
container_start_page 160
container_title Science (American Association for the Advancement of Science)
container_volume 371
creator Dereka, Bogdan
Yu, Qi
Lewis, Nicholas H C
Carpenter, William B
Bowman, Joel M
Tokmakoff, Andrei
description Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F] ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins.
doi_str_mv 10.1126/science.abe1951
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1756131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476190142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-912acc75817d875f9b3c8c32f8b76007103d6396c3bd31915f52d9893c93f0403</originalsourceid><addsrcrecordid>eNpd0M9LwzAUwPEgipvTszcpehGkW15f0zRHGf6CgRc9hzZNt4420aQV9t-buerBUw75vAfvS8gl0DlAki28arRRel6UGgSDIzIFKlgsEorHZEopZnFOOZuQM--3lIY_gadkgphCmgCfkruls97bL-2i2tku2uwqZ9faRL2N1EZ3jSraqLSmasz6nJzURev1xfjOyPvjw9vyOV69Pr0s71exSiHvYwFJoRRnOfAq56wWJapcYVLnJc8o5UCxylBkCssKQQCrWVKJXKASWNOU4oxcH_Za3zcynNhrtVHWGK16CZxlgBDQ7QF9OPs5aN_LrvFKt21htB28TFKeMZYLEIHe_KNbOzgTTvhRIGiIEdTioNS-iNO1_HBNV7idBCr3seUYW46xw8TVuHcoO139-d-6-A1Cu3k8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476190142</pqid></control><display><type>article</type><title>Crossover from hydrogen to chemical bonding</title><source>American Association for the Advancement of Science</source><creator>Dereka, Bogdan ; Yu, Qi ; Lewis, Nicholas H C ; Carpenter, William B ; Bowman, Joel M ; Tokmakoff, Andrei</creator><creatorcontrib>Dereka, Bogdan ; Yu, Qi ; Lewis, Nicholas H C ; Carpenter, William B ; Bowman, Joel M ; Tokmakoff, Andrei ; Univ. of Chicago, IL (United States)</creatorcontrib><description>Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F] ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abe1951</identifier><identifier>PMID: 33414217</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Aqueous solutions ; Bonding strength ; Chemical bonds ; Chemistry ; Crossovers ; Electrostatic properties ; Experimental methods ; Hunger ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Infrared spectroscopy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Literary Devices ; Quantum chemistry ; Spectroscopy ; Spectrum analysis</subject><ispartof>Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6525), p.160-164</ispartof><rights>Copyright © 2021, American Association for the Advancement of Science.</rights><rights>Copyright © 2021, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-912acc75817d875f9b3c8c32f8b76007103d6396c3bd31915f52d9893c93f0403</citedby><cites>FETCH-LOGICAL-c418t-912acc75817d875f9b3c8c32f8b76007103d6396c3bd31915f52d9893c93f0403</cites><orcidid>0000-0002-2030-0671 ; 0000-0003-2895-7915 ; 0000-0002-2554-0199 ; 0000-0001-9692-2672 ; 0000-0002-2434-8744 ; 0000000225540199 ; 0000000224348744 ; 0000000328957915 ; 0000000196922672 ; 0000000220300671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33414217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1756131$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dereka, Bogdan</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Lewis, Nicholas H C</creatorcontrib><creatorcontrib>Carpenter, William B</creatorcontrib><creatorcontrib>Bowman, Joel M</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><title>Crossover from hydrogen to chemical bonding</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F] ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins.</description><subject>Aqueous solutions</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Crossovers</subject><subject>Electrostatic properties</subject><subject>Experimental methods</subject><subject>Hunger</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Infrared spectroscopy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Literary Devices</subject><subject>Quantum chemistry</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUwPEgipvTszcpehGkW15f0zRHGf6CgRc9hzZNt4420aQV9t-buerBUw75vAfvS8gl0DlAki28arRRel6UGgSDIzIFKlgsEorHZEopZnFOOZuQM--3lIY_gadkgphCmgCfkruls97bL-2i2tku2uwqZ9faRL2N1EZ3jSraqLSmasz6nJzURev1xfjOyPvjw9vyOV69Pr0s71exSiHvYwFJoRRnOfAq56wWJapcYVLnJc8o5UCxylBkCssKQQCrWVKJXKASWNOU4oxcH_Za3zcynNhrtVHWGK16CZxlgBDQ7QF9OPs5aN_LrvFKt21htB28TFKeMZYLEIHe_KNbOzgTTvhRIGiIEdTioNS-iNO1_HBNV7idBCr3seUYW46xw8TVuHcoO139-d-6-A1Cu3k8</recordid><startdate>20210108</startdate><enddate>20210108</enddate><creator>Dereka, Bogdan</creator><creator>Yu, Qi</creator><creator>Lewis, Nicholas H C</creator><creator>Carpenter, William B</creator><creator>Bowman, Joel M</creator><creator>Tokmakoff, Andrei</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2030-0671</orcidid><orcidid>https://orcid.org/0000-0003-2895-7915</orcidid><orcidid>https://orcid.org/0000-0002-2554-0199</orcidid><orcidid>https://orcid.org/0000-0001-9692-2672</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000000225540199</orcidid><orcidid>https://orcid.org/0000000224348744</orcidid><orcidid>https://orcid.org/0000000328957915</orcidid><orcidid>https://orcid.org/0000000196922672</orcidid><orcidid>https://orcid.org/0000000220300671</orcidid></search><sort><creationdate>20210108</creationdate><title>Crossover from hydrogen to chemical bonding</title><author>Dereka, Bogdan ; Yu, Qi ; Lewis, Nicholas H C ; Carpenter, William B ; Bowman, Joel M ; Tokmakoff, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-912acc75817d875f9b3c8c32f8b76007103d6396c3bd31915f52d9893c93f0403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous solutions</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Crossovers</topic><topic>Electrostatic properties</topic><topic>Experimental methods</topic><topic>Hunger</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Infrared spectroscopy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Literary Devices</topic><topic>Quantum chemistry</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dereka, Bogdan</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Lewis, Nicholas H C</creatorcontrib><creatorcontrib>Carpenter, William B</creatorcontrib><creatorcontrib>Bowman, Joel M</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dereka, Bogdan</au><au>Yu, Qi</au><au>Lewis, Nicholas H C</au><au>Carpenter, William B</au><au>Bowman, Joel M</au><au>Tokmakoff, Andrei</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossover from hydrogen to chemical bonding</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-01-08</date><risdate>2021</risdate><volume>371</volume><issue>6525</issue><spage>160</spage><epage>164</epage><pages>160-164</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F] ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33414217</pmid><doi>10.1126/science.abe1951</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2030-0671</orcidid><orcidid>https://orcid.org/0000-0003-2895-7915</orcidid><orcidid>https://orcid.org/0000-0002-2554-0199</orcidid><orcidid>https://orcid.org/0000-0001-9692-2672</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000000225540199</orcidid><orcidid>https://orcid.org/0000000224348744</orcidid><orcidid>https://orcid.org/0000000328957915</orcidid><orcidid>https://orcid.org/0000000196922672</orcidid><orcidid>https://orcid.org/0000000220300671</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6525), p.160-164
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1756131
source American Association for the Advancement of Science
subjects Aqueous solutions
Bonding strength
Chemical bonds
Chemistry
Crossovers
Electrostatic properties
Experimental methods
Hunger
Hydrogen
Hydrogen bonding
Hydrogen bonds
Infrared spectroscopy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Literary Devices
Quantum chemistry
Spectroscopy
Spectrum analysis
title Crossover from hydrogen to chemical bonding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossover%20from%20hydrogen%20to%20chemical%20bonding&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Dereka,%20Bogdan&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2021-01-08&rft.volume=371&rft.issue=6525&rft.spage=160&rft.epage=164&rft.pages=160-164&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abe1951&rft_dat=%3Cproquest_osti_%3E2476190142%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476190142&rft_id=info:pmid/33414217&rfr_iscdi=true