Experimental validation of shock propagation through a foam with engineered macro-pores

The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2021-01, Vol.28 (1)
Hauptverfasser: Kim, Y., Murphy, T. J., Kozlowski, P. M., Green, L. M., Haines, B. M., Day, T. H., Cardenas, T., Woods, D. N., Smidt, J. M., Douglas, M. R., Jones, S., Velechovsky, J., Olson, R. E., Gore, R. A., Albright, B. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physics of plasmas
container_volume 28
creator Kim, Y.
Murphy, T. J.
Kozlowski, P. M.
Green, L. M.
Haines, B. M.
Day, T. H.
Cardenas, T.
Woods, D. N.
Smidt, J. M.
Douglas, M. R.
Jones, S.
Velechovsky, J.
Olson, R. E.
Gore, R. A.
Albright, B. J.
description The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due to the interaction of a shock wave with the engineered macro-pores. It is our goal to quantify how substantially complex foam structures affect the shape of shock and bulk shock speed. A cylinder-shape shock tube experiment has been designed and performed at the Omega Laser Facility. In order to examine how a foam structure will affect shock propagation, we performed several tests varying (1) engineered macro-pore size, (2) average foam density, and (3) with/without neopentane (C5H12) gas. X-ray radiographic data indicate that shock speed through engineered macro-pore foams depends strongly on average foam density and less on pore size. Experimental shock propagation data helped guide two numerical simulation approaches: (1) a 2D simulation with homogenizing foams rather than explicitly simulating engineered macro-pores and (2) a 2D toroidal-pore approximation adopting a toroidal-tube geometry to model engineered macro-pores.
doi_str_mv 10.1063/5.0024697
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1755980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475593429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-cd651ffffb6bcb5ec57b885d189cdff4fe8b899a217d084ef2dccb981836208c3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AiCs7pwW8Q9KTQmbRNmhxlzBcYeFH0FtK8rJ1bU5Ns6rc3tUMPgrk8Ifx4njz_JDlFcIIgya_wBMKsIKzcS0YIUpaWpCz2-3sJU0KKl8PkyPslhLAgmI6S59lHp12z1m0QK7AVq0aJ0NgWWAN8beUr6JztxGJ4DLWzm0UNBDBWrMF7E2qg20XTau20AmshnU0767Q_Tg6MWHl9sqvj5Olm9ji9S-cPt_fT63kqc8pCKhXByMRTkUpWWEtcVpRihSiTypjCaFpRxkSGSgVpoU2mpKwYRTQnGaQyHydnQ1_rQ8O9bIKWtbRtq2XgqMSYURjR-YDiLm8b7QNf2o1r4794VvQmLzIW1cWg4hLeO214F4MR7pMjyPtwOea7cKO9HGw_8TubH7y17hfyTpn_8N_OX_s-iWc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475593429</pqid></control><display><type>article</type><title>Experimental validation of shock propagation through a foam with engineered macro-pores</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Y. ; Murphy, T. J. ; Kozlowski, P. M. ; Green, L. M. ; Haines, B. M. ; Day, T. H. ; Cardenas, T. ; Woods, D. N. ; Smidt, J. M. ; Douglas, M. R. ; Jones, S. ; Velechovsky, J. ; Olson, R. E. ; Gore, R. A. ; Albright, B. J.</creator><creatorcontrib>Kim, Y. ; Murphy, T. J. ; Kozlowski, P. M. ; Green, L. M. ; Haines, B. M. ; Day, T. H. ; Cardenas, T. ; Woods, D. N. ; Smidt, J. M. ; Douglas, M. R. ; Jones, S. ; Velechovsky, J. ; Olson, R. E. ; Gore, R. A. ; Albright, B. J.</creatorcontrib><description>The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due to the interaction of a shock wave with the engineered macro-pores. It is our goal to quantify how substantially complex foam structures affect the shape of shock and bulk shock speed. A cylinder-shape shock tube experiment has been designed and performed at the Omega Laser Facility. In order to examine how a foam structure will affect shock propagation, we performed several tests varying (1) engineered macro-pore size, (2) average foam density, and (3) with/without neopentane (C5H12) gas. X-ray radiographic data indicate that shock speed through engineered macro-pore foams depends strongly on average foam density and less on pore size. Experimental shock propagation data helped guide two numerical simulation approaches: (1) a 2D simulation with homogenizing foams rather than explicitly simulating engineered macro-pores and (2) a 2D toroidal-pore approximation adopting a toroidal-tube geometry to model engineered macro-pores.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0024697</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Density ; Deuteration ; Foams ; Mathematical models ; Neopentane ; Plasma physics ; Pore size ; Porosity ; Propagation ; Shock waves ; Simulation ; Tritium ; Two dimensional models</subject><ispartof>Physics of plasmas, 2021-01, Vol.28 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-cd651ffffb6bcb5ec57b885d189cdff4fe8b899a217d084ef2dccb981836208c3</citedby><cites>FETCH-LOGICAL-c389t-cd651ffffb6bcb5ec57b885d189cdff4fe8b899a217d084ef2dccb981836208c3</cites><orcidid>0000-0001-5002-0964 ; 0000-0002-3994-4194 ; 0000-0002-7789-6525 ; 0000-0002-9503-0020 ; 0000-0001-5471-1404 ; 0000-0001-6849-3612 ; 0000-0002-6137-9873 ; 0000-0002-3889-7074 ; 0000-0002-7527-3674 ; 0000000168493612 ; 0000000275273674 ; 0000000261379873 ; 0000000277896525 ; 0000000150020964 ; 0000000295030020 ; 0000000154711404 ; 0000000239944194 ; 0000000238897074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0024697$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1755980$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Y.</creatorcontrib><creatorcontrib>Murphy, T. J.</creatorcontrib><creatorcontrib>Kozlowski, P. M.</creatorcontrib><creatorcontrib>Green, L. M.</creatorcontrib><creatorcontrib>Haines, B. M.</creatorcontrib><creatorcontrib>Day, T. H.</creatorcontrib><creatorcontrib>Cardenas, T.</creatorcontrib><creatorcontrib>Woods, D. N.</creatorcontrib><creatorcontrib>Smidt, J. M.</creatorcontrib><creatorcontrib>Douglas, M. R.</creatorcontrib><creatorcontrib>Jones, S.</creatorcontrib><creatorcontrib>Velechovsky, J.</creatorcontrib><creatorcontrib>Olson, R. E.</creatorcontrib><creatorcontrib>Gore, R. A.</creatorcontrib><creatorcontrib>Albright, B. J.</creatorcontrib><title>Experimental validation of shock propagation through a foam with engineered macro-pores</title><title>Physics of plasmas</title><description>The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due to the interaction of a shock wave with the engineered macro-pores. It is our goal to quantify how substantially complex foam structures affect the shape of shock and bulk shock speed. A cylinder-shape shock tube experiment has been designed and performed at the Omega Laser Facility. In order to examine how a foam structure will affect shock propagation, we performed several tests varying (1) engineered macro-pore size, (2) average foam density, and (3) with/without neopentane (C5H12) gas. X-ray radiographic data indicate that shock speed through engineered macro-pore foams depends strongly on average foam density and less on pore size. Experimental shock propagation data helped guide two numerical simulation approaches: (1) a 2D simulation with homogenizing foams rather than explicitly simulating engineered macro-pores and (2) a 2D toroidal-pore approximation adopting a toroidal-tube geometry to model engineered macro-pores.</description><subject>Density</subject><subject>Deuteration</subject><subject>Foams</subject><subject>Mathematical models</subject><subject>Neopentane</subject><subject>Plasma physics</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Propagation</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Tritium</subject><subject>Two dimensional models</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AiCs7pwW8Q9KTQmbRNmhxlzBcYeFH0FtK8rJ1bU5Ns6rc3tUMPgrk8Ifx4njz_JDlFcIIgya_wBMKsIKzcS0YIUpaWpCz2-3sJU0KKl8PkyPslhLAgmI6S59lHp12z1m0QK7AVq0aJ0NgWWAN8beUr6JztxGJ4DLWzm0UNBDBWrMF7E2qg20XTau20AmshnU0767Q_Tg6MWHl9sqvj5Olm9ji9S-cPt_fT63kqc8pCKhXByMRTkUpWWEtcVpRihSiTypjCaFpRxkSGSgVpoU2mpKwYRTQnGaQyHydnQ1_rQ8O9bIKWtbRtq2XgqMSYURjR-YDiLm8b7QNf2o1r4794VvQmLzIW1cWg4hLeO214F4MR7pMjyPtwOea7cKO9HGw_8TubH7y17hfyTpn_8N_OX_s-iWc</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Kim, Y.</creator><creator>Murphy, T. J.</creator><creator>Kozlowski, P. M.</creator><creator>Green, L. M.</creator><creator>Haines, B. M.</creator><creator>Day, T. H.</creator><creator>Cardenas, T.</creator><creator>Woods, D. N.</creator><creator>Smidt, J. M.</creator><creator>Douglas, M. R.</creator><creator>Jones, S.</creator><creator>Velechovsky, J.</creator><creator>Olson, R. E.</creator><creator>Gore, R. A.</creator><creator>Albright, B. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5002-0964</orcidid><orcidid>https://orcid.org/0000-0002-3994-4194</orcidid><orcidid>https://orcid.org/0000-0002-7789-6525</orcidid><orcidid>https://orcid.org/0000-0002-9503-0020</orcidid><orcidid>https://orcid.org/0000-0001-5471-1404</orcidid><orcidid>https://orcid.org/0000-0001-6849-3612</orcidid><orcidid>https://orcid.org/0000-0002-6137-9873</orcidid><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000-0002-7527-3674</orcidid><orcidid>https://orcid.org/0000000168493612</orcidid><orcidid>https://orcid.org/0000000275273674</orcidid><orcidid>https://orcid.org/0000000261379873</orcidid><orcidid>https://orcid.org/0000000277896525</orcidid><orcidid>https://orcid.org/0000000150020964</orcidid><orcidid>https://orcid.org/0000000295030020</orcidid><orcidid>https://orcid.org/0000000154711404</orcidid><orcidid>https://orcid.org/0000000239944194</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid></search><sort><creationdate>202101</creationdate><title>Experimental validation of shock propagation through a foam with engineered macro-pores</title><author>Kim, Y. ; Murphy, T. J. ; Kozlowski, P. M. ; Green, L. M. ; Haines, B. M. ; Day, T. H. ; Cardenas, T. ; Woods, D. N. ; Smidt, J. M. ; Douglas, M. R. ; Jones, S. ; Velechovsky, J. ; Olson, R. E. ; Gore, R. A. ; Albright, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-cd651ffffb6bcb5ec57b885d189cdff4fe8b899a217d084ef2dccb981836208c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Density</topic><topic>Deuteration</topic><topic>Foams</topic><topic>Mathematical models</topic><topic>Neopentane</topic><topic>Plasma physics</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Propagation</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Tritium</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Y.</creatorcontrib><creatorcontrib>Murphy, T. J.</creatorcontrib><creatorcontrib>Kozlowski, P. M.</creatorcontrib><creatorcontrib>Green, L. M.</creatorcontrib><creatorcontrib>Haines, B. M.</creatorcontrib><creatorcontrib>Day, T. H.</creatorcontrib><creatorcontrib>Cardenas, T.</creatorcontrib><creatorcontrib>Woods, D. N.</creatorcontrib><creatorcontrib>Smidt, J. M.</creatorcontrib><creatorcontrib>Douglas, M. R.</creatorcontrib><creatorcontrib>Jones, S.</creatorcontrib><creatorcontrib>Velechovsky, J.</creatorcontrib><creatorcontrib>Olson, R. E.</creatorcontrib><creatorcontrib>Gore, R. A.</creatorcontrib><creatorcontrib>Albright, B. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Y.</au><au>Murphy, T. J.</au><au>Kozlowski, P. M.</au><au>Green, L. M.</au><au>Haines, B. M.</au><au>Day, T. H.</au><au>Cardenas, T.</au><au>Woods, D. N.</au><au>Smidt, J. M.</au><au>Douglas, M. R.</au><au>Jones, S.</au><au>Velechovsky, J.</au><au>Olson, R. E.</au><au>Gore, R. A.</au><au>Albright, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental validation of shock propagation through a foam with engineered macro-pores</atitle><jtitle>Physics of plasmas</jtitle><date>2021-01</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due to the interaction of a shock wave with the engineered macro-pores. It is our goal to quantify how substantially complex foam structures affect the shape of shock and bulk shock speed. A cylinder-shape shock tube experiment has been designed and performed at the Omega Laser Facility. In order to examine how a foam structure will affect shock propagation, we performed several tests varying (1) engineered macro-pore size, (2) average foam density, and (3) with/without neopentane (C5H12) gas. X-ray radiographic data indicate that shock speed through engineered macro-pore foams depends strongly on average foam density and less on pore size. Experimental shock propagation data helped guide two numerical simulation approaches: (1) a 2D simulation with homogenizing foams rather than explicitly simulating engineered macro-pores and (2) a 2D toroidal-pore approximation adopting a toroidal-tube geometry to model engineered macro-pores.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0024697</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5002-0964</orcidid><orcidid>https://orcid.org/0000-0002-3994-4194</orcidid><orcidid>https://orcid.org/0000-0002-7789-6525</orcidid><orcidid>https://orcid.org/0000-0002-9503-0020</orcidid><orcidid>https://orcid.org/0000-0001-5471-1404</orcidid><orcidid>https://orcid.org/0000-0001-6849-3612</orcidid><orcidid>https://orcid.org/0000-0002-6137-9873</orcidid><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000-0002-7527-3674</orcidid><orcidid>https://orcid.org/0000000168493612</orcidid><orcidid>https://orcid.org/0000000275273674</orcidid><orcidid>https://orcid.org/0000000261379873</orcidid><orcidid>https://orcid.org/0000000277896525</orcidid><orcidid>https://orcid.org/0000000150020964</orcidid><orcidid>https://orcid.org/0000000295030020</orcidid><orcidid>https://orcid.org/0000000154711404</orcidid><orcidid>https://orcid.org/0000000239944194</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2021-01, Vol.28 (1)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1755980
source AIP Journals Complete; Alma/SFX Local Collection
subjects Density
Deuteration
Foams
Mathematical models
Neopentane
Plasma physics
Pore size
Porosity
Propagation
Shock waves
Simulation
Tritium
Two dimensional models
title Experimental validation of shock propagation through a foam with engineered macro-pores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20validation%20of%20shock%20propagation%20through%20a%20foam%20with%20engineered%20macro-pores&rft.jtitle=Physics%20of%20plasmas&rft.au=Kim,%20Y.&rft.date=2021-01&rft.volume=28&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0024697&rft_dat=%3Cproquest_osti_%3E2475593429%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475593429&rft_id=info:pmid/&rfr_iscdi=true