Experimental validation of shock propagation through a foam with engineered macro-pores
The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2021-01, Vol.28 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 28 |
creator | Kim, Y. Murphy, T. J. Kozlowski, P. M. Green, L. M. Haines, B. M. Day, T. H. Cardenas, T. Woods, D. N. Smidt, J. M. Douglas, M. R. Jones, S. Velechovsky, J. Olson, R. E. Gore, R. A. Albright, B. J. |
description | The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due to the interaction of a shock wave with the engineered macro-pores. It is our goal to quantify how substantially complex foam structures affect the shape of shock and bulk shock speed. A cylinder-shape shock tube experiment has been designed and performed at the Omega Laser Facility. In order to examine how a foam structure will affect shock propagation, we performed several tests varying (1) engineered macro-pore size, (2) average foam density, and (3) with/without neopentane (C5H12) gas. X-ray radiographic data indicate that shock speed through engineered macro-pore foams depends strongly on average foam density and less on pore size. Experimental shock propagation data helped guide two numerical simulation approaches: (1) a 2D simulation with homogenizing foams rather than explicitly simulating engineered macro-pores and (2) a 2D toroidal-pore approximation adopting a toroidal-tube geometry to model engineered macro-pores. |
doi_str_mv | 10.1063/5.0024697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1755980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475593429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-cd651ffffb6bcb5ec57b885d189cdff4fe8b899a217d084ef2dccb981836208c3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AiCs7pwW8Q9KTQmbRNmhxlzBcYeFH0FtK8rJ1bU5Ns6rc3tUMPgrk8Ifx4njz_JDlFcIIgya_wBMKsIKzcS0YIUpaWpCz2-3sJU0KKl8PkyPslhLAgmI6S59lHp12z1m0QK7AVq0aJ0NgWWAN8beUr6JztxGJ4DLWzm0UNBDBWrMF7E2qg20XTau20AmshnU0767Q_Tg6MWHl9sqvj5Olm9ji9S-cPt_fT63kqc8pCKhXByMRTkUpWWEtcVpRihSiTypjCaFpRxkSGSgVpoU2mpKwYRTQnGaQyHydnQ1_rQ8O9bIKWtbRtq2XgqMSYURjR-YDiLm8b7QNf2o1r4794VvQmLzIW1cWg4hLeO214F4MR7pMjyPtwOea7cKO9HGw_8TubH7y17hfyTpn_8N_OX_s-iWc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475593429</pqid></control><display><type>article</type><title>Experimental validation of shock propagation through a foam with engineered macro-pores</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Y. ; Murphy, T. J. ; Kozlowski, P. M. ; Green, L. M. ; Haines, B. M. ; Day, T. H. ; Cardenas, T. ; Woods, D. N. ; Smidt, J. M. ; Douglas, M. R. ; Jones, S. ; Velechovsky, J. ; Olson, R. E. ; Gore, R. A. ; Albright, B. J.</creator><creatorcontrib>Kim, Y. ; Murphy, T. J. ; Kozlowski, P. M. ; Green, L. M. ; Haines, B. M. ; Day, T. H. ; Cardenas, T. ; Woods, D. N. ; Smidt, J. M. ; Douglas, M. R. ; Jones, S. ; Velechovsky, J. ; Olson, R. E. ; Gore, R. A. ; Albright, B. J.</creatorcontrib><description>The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due to the interaction of a shock wave with the engineered macro-pores. It is our goal to quantify how substantially complex foam structures affect the shape of shock and bulk shock speed. A cylinder-shape shock tube experiment has been designed and performed at the Omega Laser Facility. In order to examine how a foam structure will affect shock propagation, we performed several tests varying (1) engineered macro-pore size, (2) average foam density, and (3) with/without neopentane (C5H12) gas. X-ray radiographic data indicate that shock speed through engineered macro-pore foams depends strongly on average foam density and less on pore size. Experimental shock propagation data helped guide two numerical simulation approaches: (1) a 2D simulation with homogenizing foams rather than explicitly simulating engineered macro-pores and (2) a 2D toroidal-pore approximation adopting a toroidal-tube geometry to model engineered macro-pores.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0024697</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Density ; Deuteration ; Foams ; Mathematical models ; Neopentane ; Plasma physics ; Pore size ; Porosity ; Propagation ; Shock waves ; Simulation ; Tritium ; Two dimensional models</subject><ispartof>Physics of plasmas, 2021-01, Vol.28 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-cd651ffffb6bcb5ec57b885d189cdff4fe8b899a217d084ef2dccb981836208c3</citedby><cites>FETCH-LOGICAL-c389t-cd651ffffb6bcb5ec57b885d189cdff4fe8b899a217d084ef2dccb981836208c3</cites><orcidid>0000-0001-5002-0964 ; 0000-0002-3994-4194 ; 0000-0002-7789-6525 ; 0000-0002-9503-0020 ; 0000-0001-5471-1404 ; 0000-0001-6849-3612 ; 0000-0002-6137-9873 ; 0000-0002-3889-7074 ; 0000-0002-7527-3674 ; 0000000168493612 ; 0000000275273674 ; 0000000261379873 ; 0000000277896525 ; 0000000150020964 ; 0000000295030020 ; 0000000154711404 ; 0000000239944194 ; 0000000238897074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0024697$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1755980$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Y.</creatorcontrib><creatorcontrib>Murphy, T. J.</creatorcontrib><creatorcontrib>Kozlowski, P. M.</creatorcontrib><creatorcontrib>Green, L. M.</creatorcontrib><creatorcontrib>Haines, B. M.</creatorcontrib><creatorcontrib>Day, T. H.</creatorcontrib><creatorcontrib>Cardenas, T.</creatorcontrib><creatorcontrib>Woods, D. N.</creatorcontrib><creatorcontrib>Smidt, J. M.</creatorcontrib><creatorcontrib>Douglas, M. R.</creatorcontrib><creatorcontrib>Jones, S.</creatorcontrib><creatorcontrib>Velechovsky, J.</creatorcontrib><creatorcontrib>Olson, R. E.</creatorcontrib><creatorcontrib>Gore, R. A.</creatorcontrib><creatorcontrib>Albright, B. J.</creatorcontrib><title>Experimental validation of shock propagation through a foam with engineered macro-pores</title><title>Physics of plasmas</title><description>The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due to the interaction of a shock wave with the engineered macro-pores. It is our goal to quantify how substantially complex foam structures affect the shape of shock and bulk shock speed. A cylinder-shape shock tube experiment has been designed and performed at the Omega Laser Facility. In order to examine how a foam structure will affect shock propagation, we performed several tests varying (1) engineered macro-pore size, (2) average foam density, and (3) with/without neopentane (C5H12) gas. X-ray radiographic data indicate that shock speed through engineered macro-pore foams depends strongly on average foam density and less on pore size. Experimental shock propagation data helped guide two numerical simulation approaches: (1) a 2D simulation with homogenizing foams rather than explicitly simulating engineered macro-pores and (2) a 2D toroidal-pore approximation adopting a toroidal-tube geometry to model engineered macro-pores.</description><subject>Density</subject><subject>Deuteration</subject><subject>Foams</subject><subject>Mathematical models</subject><subject>Neopentane</subject><subject>Plasma physics</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Propagation</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Tritium</subject><subject>Two dimensional models</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AiCs7pwW8Q9KTQmbRNmhxlzBcYeFH0FtK8rJ1bU5Ns6rc3tUMPgrk8Ifx4njz_JDlFcIIgya_wBMKsIKzcS0YIUpaWpCz2-3sJU0KKl8PkyPslhLAgmI6S59lHp12z1m0QK7AVq0aJ0NgWWAN8beUr6JztxGJ4DLWzm0UNBDBWrMF7E2qg20XTau20AmshnU0767Q_Tg6MWHl9sqvj5Olm9ji9S-cPt_fT63kqc8pCKhXByMRTkUpWWEtcVpRihSiTypjCaFpRxkSGSgVpoU2mpKwYRTQnGaQyHydnQ1_rQ8O9bIKWtbRtq2XgqMSYURjR-YDiLm8b7QNf2o1r4794VvQmLzIW1cWg4hLeO214F4MR7pMjyPtwOea7cKO9HGw_8TubH7y17hfyTpn_8N_OX_s-iWc</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Kim, Y.</creator><creator>Murphy, T. J.</creator><creator>Kozlowski, P. M.</creator><creator>Green, L. M.</creator><creator>Haines, B. M.</creator><creator>Day, T. H.</creator><creator>Cardenas, T.</creator><creator>Woods, D. N.</creator><creator>Smidt, J. M.</creator><creator>Douglas, M. R.</creator><creator>Jones, S.</creator><creator>Velechovsky, J.</creator><creator>Olson, R. E.</creator><creator>Gore, R. A.</creator><creator>Albright, B. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5002-0964</orcidid><orcidid>https://orcid.org/0000-0002-3994-4194</orcidid><orcidid>https://orcid.org/0000-0002-7789-6525</orcidid><orcidid>https://orcid.org/0000-0002-9503-0020</orcidid><orcidid>https://orcid.org/0000-0001-5471-1404</orcidid><orcidid>https://orcid.org/0000-0001-6849-3612</orcidid><orcidid>https://orcid.org/0000-0002-6137-9873</orcidid><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000-0002-7527-3674</orcidid><orcidid>https://orcid.org/0000000168493612</orcidid><orcidid>https://orcid.org/0000000275273674</orcidid><orcidid>https://orcid.org/0000000261379873</orcidid><orcidid>https://orcid.org/0000000277896525</orcidid><orcidid>https://orcid.org/0000000150020964</orcidid><orcidid>https://orcid.org/0000000295030020</orcidid><orcidid>https://orcid.org/0000000154711404</orcidid><orcidid>https://orcid.org/0000000239944194</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid></search><sort><creationdate>202101</creationdate><title>Experimental validation of shock propagation through a foam with engineered macro-pores</title><author>Kim, Y. ; Murphy, T. J. ; Kozlowski, P. M. ; Green, L. M. ; Haines, B. M. ; Day, T. H. ; Cardenas, T. ; Woods, D. N. ; Smidt, J. M. ; Douglas, M. R. ; Jones, S. ; Velechovsky, J. ; Olson, R. E. ; Gore, R. A. ; Albright, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-cd651ffffb6bcb5ec57b885d189cdff4fe8b899a217d084ef2dccb981836208c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Density</topic><topic>Deuteration</topic><topic>Foams</topic><topic>Mathematical models</topic><topic>Neopentane</topic><topic>Plasma physics</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Propagation</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Tritium</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Y.</creatorcontrib><creatorcontrib>Murphy, T. J.</creatorcontrib><creatorcontrib>Kozlowski, P. M.</creatorcontrib><creatorcontrib>Green, L. M.</creatorcontrib><creatorcontrib>Haines, B. M.</creatorcontrib><creatorcontrib>Day, T. H.</creatorcontrib><creatorcontrib>Cardenas, T.</creatorcontrib><creatorcontrib>Woods, D. N.</creatorcontrib><creatorcontrib>Smidt, J. M.</creatorcontrib><creatorcontrib>Douglas, M. R.</creatorcontrib><creatorcontrib>Jones, S.</creatorcontrib><creatorcontrib>Velechovsky, J.</creatorcontrib><creatorcontrib>Olson, R. E.</creatorcontrib><creatorcontrib>Gore, R. A.</creatorcontrib><creatorcontrib>Albright, B. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Y.</au><au>Murphy, T. J.</au><au>Kozlowski, P. M.</au><au>Green, L. M.</au><au>Haines, B. M.</au><au>Day, T. H.</au><au>Cardenas, T.</au><au>Woods, D. N.</au><au>Smidt, J. M.</au><au>Douglas, M. R.</au><au>Jones, S.</au><au>Velechovsky, J.</au><au>Olson, R. E.</au><au>Gore, R. A.</au><au>Albright, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental validation of shock propagation through a foam with engineered macro-pores</atitle><jtitle>Physics of plasmas</jtitle><date>2021-01</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The engineered macro-pore foam provides a new way to study thermonuclear burn physics by utilizing capsules containing deuterated (D) foam and filling tritium (T) gas in the engineered macro-pores. The implosion of a thermonuclear capsule filled with an engineered macro-pore foam will be complex due to the interaction of a shock wave with the engineered macro-pores. It is our goal to quantify how substantially complex foam structures affect the shape of shock and bulk shock speed. A cylinder-shape shock tube experiment has been designed and performed at the Omega Laser Facility. In order to examine how a foam structure will affect shock propagation, we performed several tests varying (1) engineered macro-pore size, (2) average foam density, and (3) with/without neopentane (C5H12) gas. X-ray radiographic data indicate that shock speed through engineered macro-pore foams depends strongly on average foam density and less on pore size. Experimental shock propagation data helped guide two numerical simulation approaches: (1) a 2D simulation with homogenizing foams rather than explicitly simulating engineered macro-pores and (2) a 2D toroidal-pore approximation adopting a toroidal-tube geometry to model engineered macro-pores.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0024697</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5002-0964</orcidid><orcidid>https://orcid.org/0000-0002-3994-4194</orcidid><orcidid>https://orcid.org/0000-0002-7789-6525</orcidid><orcidid>https://orcid.org/0000-0002-9503-0020</orcidid><orcidid>https://orcid.org/0000-0001-5471-1404</orcidid><orcidid>https://orcid.org/0000-0001-6849-3612</orcidid><orcidid>https://orcid.org/0000-0002-6137-9873</orcidid><orcidid>https://orcid.org/0000-0002-3889-7074</orcidid><orcidid>https://orcid.org/0000-0002-7527-3674</orcidid><orcidid>https://orcid.org/0000000168493612</orcidid><orcidid>https://orcid.org/0000000275273674</orcidid><orcidid>https://orcid.org/0000000261379873</orcidid><orcidid>https://orcid.org/0000000277896525</orcidid><orcidid>https://orcid.org/0000000150020964</orcidid><orcidid>https://orcid.org/0000000295030020</orcidid><orcidid>https://orcid.org/0000000154711404</orcidid><orcidid>https://orcid.org/0000000239944194</orcidid><orcidid>https://orcid.org/0000000238897074</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2021-01, Vol.28 (1) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1755980 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Density Deuteration Foams Mathematical models Neopentane Plasma physics Pore size Porosity Propagation Shock waves Simulation Tritium Two dimensional models |
title | Experimental validation of shock propagation through a foam with engineered macro-pores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20validation%20of%20shock%20propagation%20through%20a%20foam%20with%20engineered%20macro-pores&rft.jtitle=Physics%20of%20plasmas&rft.au=Kim,%20Y.&rft.date=2021-01&rft.volume=28&rft.issue=1&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0024697&rft_dat=%3Cproquest_osti_%3E2475593429%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475593429&rft_id=info:pmid/&rfr_iscdi=true |