Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications

Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2020-10, Vol.47 (9-10), p.863-876
Hauptverfasser: Gupta, Dinesh, Guzman, Michael S., Bose, Arpita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 876
container_issue 9-10
container_start_page 863
container_title Journal of industrial microbiology & biotechnology
container_volume 47
creator Gupta, Dinesh
Guzman, Michael S.
Bose, Arpita
description Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
doi_str_mv 10.1007/s10295-020-02309-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1755834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471667921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-5e19fdd369067769dfc1c3f4d42ac2471a643e378f4c1a07ec16ccadf08e06f03</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1ERUvhBVggCzYsSBn_J-xQ1UKlSt3A2vJ1nF4XJw62U3HfHocUKrFgYXns-TyeOQehVwTOCID6kAnQTjRAoS4GXQNP0AnhSjZCMPG0xkyqRnAmjtHznO8AQChFn6FjRjsGbQcnKF78LMlYF8ISTMIuOFtSnPAyF_Pd4d0Bm6XEejXvvcWjtynuXP6I5_0h-xjirbcmvMfOPsZm6rG7j2EpPk4mHbAf51BT6zG_QEeDCdm9fNhP0bfLi6_nX5rrm89X55-uGysYLY1wpBv6nskOpFKy6wdLLBt4z6mxlCtiJGeOqXbglhhQzhJprekHaB3IAdgperPVjbl4na0vzu5tnKY6nyZKiJbxCr3boDnFH4vLRY8-r1qYycUla8o5bfkqZkXf_oPexSVNdQS9tiOl6iipFN2oKlPOyQ16Tn6sGmgCevVMb57p6pn-7ZleW339UHrZja7_--SPSRVgG5Brarp16fHv_5T9BX1QozA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471667921</pqid></control><display><type>article</type><title>Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gupta, Dinesh ; Guzman, Michael S. ; Bose, Arpita</creator><creatorcontrib>Gupta, Dinesh ; Guzman, Michael S. ; Bose, Arpita ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-020-02309-0</identifier><identifier>PMID: 32930890</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Autotrophic Processes ; Autotrophs ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; biogeochemical cycle ; Bioinformatics ; biological and medical sciences ; Biological Transport ; Biomedical and Life Sciences ; Biosphere ; Biotechnology ; Carbon Cycle ; chemoautotrophy ; Ecology ; Electrodes ; Electron Transport ; Electrons ; Energy flow ; Environmental Microbiology - Mini Review ; Exchanging ; extracellular electron uptake (EEU) ; Genetic Engineering ; Inorganic Chemistry ; Life Sciences ; Microbiology ; Microorganisms ; Minerals ; Oxidation ; Oxidation-Reduction ; photoautotrophy ; photoferrotrophy ; Photosynthesis ; Photosynthesis - physiology ; Physiology</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2020-10, Vol.47 (9-10), p.863-876</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2020</rights><rights>Society for Industrial Microbiology and Biotechnology 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-5e19fdd369067769dfc1c3f4d42ac2471a643e378f4c1a07ec16ccadf08e06f03</citedby><cites>FETCH-LOGICAL-c532t-5e19fdd369067769dfc1c3f4d42ac2471a643e378f4c1a07ec16ccadf08e06f03</cites><orcidid>0000-0002-7526-0988 ; 0000000275260988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-020-02309-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-020-02309-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32930890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1755834$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Dinesh</creatorcontrib><creatorcontrib>Guzman, Michael S.</creatorcontrib><creatorcontrib>Bose, Arpita</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.</description><subject>Autotrophic Processes</subject><subject>Autotrophs</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>biogeochemical cycle</subject><subject>Bioinformatics</subject><subject>biological and medical sciences</subject><subject>Biological Transport</subject><subject>Biomedical and Life Sciences</subject><subject>Biosphere</subject><subject>Biotechnology</subject><subject>Carbon Cycle</subject><subject>chemoautotrophy</subject><subject>Ecology</subject><subject>Electrodes</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Energy flow</subject><subject>Environmental Microbiology - Mini Review</subject><subject>Exchanging</subject><subject>extracellular electron uptake (EEU)</subject><subject>Genetic Engineering</subject><subject>Inorganic Chemistry</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>photoautotrophy</subject><subject>photoferrotrophy</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Physiology</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1u1TAQhS1ERUvhBVggCzYsSBn_J-xQ1UKlSt3A2vJ1nF4XJw62U3HfHocUKrFgYXns-TyeOQehVwTOCID6kAnQTjRAoS4GXQNP0AnhSjZCMPG0xkyqRnAmjtHznO8AQChFn6FjRjsGbQcnKF78LMlYF8ISTMIuOFtSnPAyF_Pd4d0Bm6XEejXvvcWjtynuXP6I5_0h-xjirbcmvMfOPsZm6rG7j2EpPk4mHbAf51BT6zG_QEeDCdm9fNhP0bfLi6_nX5rrm89X55-uGysYLY1wpBv6nskOpFKy6wdLLBt4z6mxlCtiJGeOqXbglhhQzhJprekHaB3IAdgperPVjbl4na0vzu5tnKY6nyZKiJbxCr3boDnFH4vLRY8-r1qYycUla8o5bfkqZkXf_oPexSVNdQS9tiOl6iipFN2oKlPOyQ16Tn6sGmgCevVMb57p6pn-7ZleW339UHrZja7_--SPSRVgG5Brarp16fHv_5T9BX1QozA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Gupta, Dinesh</creator><creator>Guzman, Michael S.</creator><creator>Bose, Arpita</creator><general>Springer International Publishing</general><general>Oxford University Press</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7526-0988</orcidid><orcidid>https://orcid.org/0000000275260988</orcidid></search><sort><creationdate>20201001</creationdate><title>Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications</title><author>Gupta, Dinesh ; Guzman, Michael S. ; Bose, Arpita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-5e19fdd369067769dfc1c3f4d42ac2471a643e378f4c1a07ec16ccadf08e06f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autotrophic Processes</topic><topic>Autotrophs</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>biogeochemical cycle</topic><topic>Bioinformatics</topic><topic>biological and medical sciences</topic><topic>Biological Transport</topic><topic>Biomedical and Life Sciences</topic><topic>Biosphere</topic><topic>Biotechnology</topic><topic>Carbon Cycle</topic><topic>chemoautotrophy</topic><topic>Ecology</topic><topic>Electrodes</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Energy flow</topic><topic>Environmental Microbiology - Mini Review</topic><topic>Exchanging</topic><topic>extracellular electron uptake (EEU)</topic><topic>Genetic Engineering</topic><topic>Inorganic Chemistry</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>photoautotrophy</topic><topic>photoferrotrophy</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Dinesh</creatorcontrib><creatorcontrib>Guzman, Michael S.</creatorcontrib><creatorcontrib>Bose, Arpita</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Dinesh</au><au>Guzman, Michael S.</au><au>Bose, Arpita</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>47</volume><issue>9-10</issue><spage>863</spage><epage>876</epage><pages>863-876</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32930890</pmid><doi>10.1007/s10295-020-02309-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7526-0988</orcidid><orcidid>https://orcid.org/0000000275260988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2020-10, Vol.47 (9-10), p.863-876
issn 1367-5435
1476-5535
language eng
recordid cdi_osti_scitechconnect_1755834
source MEDLINE; Oxford Journals Open Access Collection; SpringerLink Journals - AutoHoldings
subjects Autotrophic Processes
Autotrophs
BASIC BIOLOGICAL SCIENCES
Biochemistry
biogeochemical cycle
Bioinformatics
biological and medical sciences
Biological Transport
Biomedical and Life Sciences
Biosphere
Biotechnology
Carbon Cycle
chemoautotrophy
Ecology
Electrodes
Electron Transport
Electrons
Energy flow
Environmental Microbiology - Mini Review
Exchanging
extracellular electron uptake (EEU)
Genetic Engineering
Inorganic Chemistry
Life Sciences
Microbiology
Microorganisms
Minerals
Oxidation
Oxidation-Reduction
photoautotrophy
photoferrotrophy
Photosynthesis
Photosynthesis - physiology
Physiology
title Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracellular%20electron%20uptake%20by%20autotrophic%20microbes:%20physiological,%20ecological,%20and%20evolutionary%20implications&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Gupta,%20Dinesh&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-10-01&rft.volume=47&rft.issue=9-10&rft.spage=863&rft.epage=876&rft.pages=863-876&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-020-02309-0&rft_dat=%3Cproquest_osti_%3E2471667921%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471667921&rft_id=info:pmid/32930890&rfr_iscdi=true