Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion

•A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-sou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-01, Vol.367, p.137493, Article 137493
Hauptverfasser: Huang, Jake, Papac, Meagan, O’Hayre, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 137493
container_title Electrochimica acta
container_volume 367
creator Huang, Jake
Papac, Meagan
O’Hayre, Ryan
description •A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-source Python package is provided for public use and further development. [Display omitted] Distribution-based analyses, such as the distribution of relaxation times (DRT) and the distribution of diffusion times (DDT), present model-free alternatives to equivalent circuit modeling for analysis of electrochemical impedance spectroscopy (EIS) data. However, reconstructing such distributions from noisy impedance data is an ill-posed problem that must be solved with specialized inversion algorithms, requiring careful control and tuning. Furthermore, most inversion algorithms developed to date can only solve problems of limited complexity. In this work, we present a new hierarchical Bayesian method for EIS inversion, leveraging efficient algorithms for optimization and Hamiltonian Monte Carlo (HMC) sampling to solve models of arbitrary complexity. We overcome the challenge of ad-hoc parameter tuning by encoding intrinsic characteristics of the DRT and DDT into flexible prior distributions and “pre-calibrating” the model to simulated data. This approach is versatile, highly robust to noise, and provides quantitative estimates of both the error structure of the data and the uncertainty in the recovered distributions. The model is validated with simulated data to demonstrate accurate recovery of the DRT and the DDT. The method also shows promise for simultaneous recovery of multiple distributions, raising the intriguing possibility of semi-autonomous EIS analysis and ad-hoc model construction. Finally, the practical utility of the method is illustrated with experimental data. Throughout, we draw comparisons to several recently published EIS inversion methodologies.
doi_str_mv 10.1016/j.electacta.2020.137493
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1755725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620318867</els_id><sourcerecordid>2489025406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-37245dfb607ca0481474bed3ff58e4b282138fbb645607e7738e6a7aafa64d293</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EEkvhGbDgAocs_hfb4batSqlUiQPlbE2cieLVbhzspNU-Dm-Kt0HcEJIlS6PfzHzffIS85WzLGdef9ls8oJ-hvK1golSlUY18RjbcGllJWzfPyYYxLiulrX5JXuW8Z4wZbdiG_LqPj5C6TFNslzxTWOY4xmNcMg3HCTsYPdI8lQUpZh-nE4URDqcc8me6ox4OoU0wY0eHgAmSH0Kp0Us4YQ4wUpimFMEPtI-JPulM0Q94fKL-seDD9e33jzSMD5hyiONr8qKHQ8Y3f_4L8uPL9f3V1-ru283t1e6u8oo3cyWNUHXXt5oZD0xZroxqsZN9X1tUrbCCS9u3rVZ1QdAYaVGDAehBq0408oK8W-fGPAeXfZjRDz6OY5HmuKlrI-oCvV-hYuvngnl2-7ikcpHshLINE7ViulBmpXzxlBP2bkrhCOnkOHPn0Nze_Q3NnUNza2ilc7d2YnH6UE56FoLlRF1IZx1dDP-d8Rs68KgX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489025406</pqid></control><display><type>article</type><title>Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Jake ; Papac, Meagan ; O’Hayre, Ryan</creator><creatorcontrib>Huang, Jake ; Papac, Meagan ; O’Hayre, Ryan ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>•A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-source Python package is provided for public use and further development. [Display omitted] Distribution-based analyses, such as the distribution of relaxation times (DRT) and the distribution of diffusion times (DDT), present model-free alternatives to equivalent circuit modeling for analysis of electrochemical impedance spectroscopy (EIS) data. However, reconstructing such distributions from noisy impedance data is an ill-posed problem that must be solved with specialized inversion algorithms, requiring careful control and tuning. Furthermore, most inversion algorithms developed to date can only solve problems of limited complexity. In this work, we present a new hierarchical Bayesian method for EIS inversion, leveraging efficient algorithms for optimization and Hamiltonian Monte Carlo (HMC) sampling to solve models of arbitrary complexity. We overcome the challenge of ad-hoc parameter tuning by encoding intrinsic characteristics of the DRT and DDT into flexible prior distributions and “pre-calibrating” the model to simulated data. This approach is versatile, highly robust to noise, and provides quantitative estimates of both the error structure of the data and the uncertainty in the recovered distributions. The model is validated with simulated data to demonstrate accurate recovery of the DRT and the DDT. The method also shows promise for simultaneous recovery of multiple distributions, raising the intriguing possibility of semi-autonomous EIS analysis and ad-hoc model construction. Finally, the practical utility of the method is illustrated with experimental data. Throughout, we draw comparisons to several recently published EIS inversion methodologies.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137493</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Batteries ; Bayesian analysis ; Bayesian inference ; Complexity ; Computer simulation ; Distribution of diffusion times ; Distribution of relaxation times ; Electrochemical impedance spectroscopy ; Equivalent circuits ; Fuel cells ; Hamiltonian Monte Carlo ; Ill posed problems ; MATERIALS SCIENCE ; Optimization ; Robustness ; Spectroscopic analysis ; Spectrum analysis ; Tuning</subject><ispartof>Electrochimica acta, 2021-01, Vol.367, p.137493, Article 137493</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 20, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-37245dfb607ca0481474bed3ff58e4b282138fbb645607e7738e6a7aafa64d293</citedby><cites>FETCH-LOGICAL-c419t-37245dfb607ca0481474bed3ff58e4b282138fbb645607e7738e6a7aafa64d293</cites><orcidid>0000-0002-9487-5128 ; 0000-0003-3762-3052 ; 0000000294875128 ; 0000000337623052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.137493$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1755725$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jake</creatorcontrib><creatorcontrib>Papac, Meagan</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion</title><title>Electrochimica acta</title><description>•A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-source Python package is provided for public use and further development. [Display omitted] Distribution-based analyses, such as the distribution of relaxation times (DRT) and the distribution of diffusion times (DDT), present model-free alternatives to equivalent circuit modeling for analysis of electrochemical impedance spectroscopy (EIS) data. However, reconstructing such distributions from noisy impedance data is an ill-posed problem that must be solved with specialized inversion algorithms, requiring careful control and tuning. Furthermore, most inversion algorithms developed to date can only solve problems of limited complexity. In this work, we present a new hierarchical Bayesian method for EIS inversion, leveraging efficient algorithms for optimization and Hamiltonian Monte Carlo (HMC) sampling to solve models of arbitrary complexity. We overcome the challenge of ad-hoc parameter tuning by encoding intrinsic characteristics of the DRT and DDT into flexible prior distributions and “pre-calibrating” the model to simulated data. This approach is versatile, highly robust to noise, and provides quantitative estimates of both the error structure of the data and the uncertainty in the recovered distributions. The model is validated with simulated data to demonstrate accurate recovery of the DRT and the DDT. The method also shows promise for simultaneous recovery of multiple distributions, raising the intriguing possibility of semi-autonomous EIS analysis and ad-hoc model construction. Finally, the practical utility of the method is illustrated with experimental data. Throughout, we draw comparisons to several recently published EIS inversion methodologies.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Distribution of diffusion times</subject><subject>Distribution of relaxation times</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Equivalent circuits</subject><subject>Fuel cells</subject><subject>Hamiltonian Monte Carlo</subject><subject>Ill posed problems</subject><subject>MATERIALS SCIENCE</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Tuning</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi0EEkvhGbDgAocs_hfb4batSqlUiQPlbE2cieLVbhzspNU-Dm-Kt0HcEJIlS6PfzHzffIS85WzLGdef9ls8oJ-hvK1golSlUY18RjbcGllJWzfPyYYxLiulrX5JXuW8Z4wZbdiG_LqPj5C6TFNslzxTWOY4xmNcMg3HCTsYPdI8lQUpZh-nE4URDqcc8me6ox4OoU0wY0eHgAmSH0Kp0Us4YQ4wUpimFMEPtI-JPulM0Q94fKL-seDD9e33jzSMD5hyiONr8qKHQ8Y3f_4L8uPL9f3V1-ru283t1e6u8oo3cyWNUHXXt5oZD0xZroxqsZN9X1tUrbCCS9u3rVZ1QdAYaVGDAehBq0408oK8W-fGPAeXfZjRDz6OY5HmuKlrI-oCvV-hYuvngnl2-7ikcpHshLINE7ViulBmpXzxlBP2bkrhCOnkOHPn0Nze_Q3NnUNza2ilc7d2YnH6UE56FoLlRF1IZx1dDP-d8Rs68KgX</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Huang, Jake</creator><creator>Papac, Meagan</creator><creator>O’Hayre, Ryan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9487-5128</orcidid><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/0000000294875128</orcidid><orcidid>https://orcid.org/0000000337623052</orcidid></search><sort><creationdate>20210120</creationdate><title>Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion</title><author>Huang, Jake ; Papac, Meagan ; O’Hayre, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-37245dfb607ca0481474bed3ff58e4b282138fbb645607e7738e6a7aafa64d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Distribution of diffusion times</topic><topic>Distribution of relaxation times</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Equivalent circuits</topic><topic>Fuel cells</topic><topic>Hamiltonian Monte Carlo</topic><topic>Ill posed problems</topic><topic>MATERIALS SCIENCE</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jake</creatorcontrib><creatorcontrib>Papac, Meagan</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jake</au><au>Papac, Meagan</au><au>O’Hayre, Ryan</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion</atitle><jtitle>Electrochimica acta</jtitle><date>2021-01-20</date><risdate>2021</risdate><volume>367</volume><spage>137493</spage><pages>137493-</pages><artnum>137493</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-source Python package is provided for public use and further development. [Display omitted] Distribution-based analyses, such as the distribution of relaxation times (DRT) and the distribution of diffusion times (DDT), present model-free alternatives to equivalent circuit modeling for analysis of electrochemical impedance spectroscopy (EIS) data. However, reconstructing such distributions from noisy impedance data is an ill-posed problem that must be solved with specialized inversion algorithms, requiring careful control and tuning. Furthermore, most inversion algorithms developed to date can only solve problems of limited complexity. In this work, we present a new hierarchical Bayesian method for EIS inversion, leveraging efficient algorithms for optimization and Hamiltonian Monte Carlo (HMC) sampling to solve models of arbitrary complexity. We overcome the challenge of ad-hoc parameter tuning by encoding intrinsic characteristics of the DRT and DDT into flexible prior distributions and “pre-calibrating” the model to simulated data. This approach is versatile, highly robust to noise, and provides quantitative estimates of both the error structure of the data and the uncertainty in the recovered distributions. The model is validated with simulated data to demonstrate accurate recovery of the DRT and the DDT. The method also shows promise for simultaneous recovery of multiple distributions, raising the intriguing possibility of semi-autonomous EIS analysis and ad-hoc model construction. Finally, the practical utility of the method is illustrated with experimental data. Throughout, we draw comparisons to several recently published EIS inversion methodologies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137493</doi><orcidid>https://orcid.org/0000-0002-9487-5128</orcidid><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/0000000294875128</orcidid><orcidid>https://orcid.org/0000000337623052</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-01, Vol.367, p.137493, Article 137493
issn 0013-4686
1873-3859
language eng
recordid cdi_osti_scitechconnect_1755725
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Batteries
Bayesian analysis
Bayesian inference
Complexity
Computer simulation
Distribution of diffusion times
Distribution of relaxation times
Electrochemical impedance spectroscopy
Equivalent circuits
Fuel cells
Hamiltonian Monte Carlo
Ill posed problems
MATERIALS SCIENCE
Optimization
Robustness
Spectroscopic analysis
Spectrum analysis
Tuning
title Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20robust%20autonomous%20impedance%20spectroscopy%20analysis:%20A%20calibrated%20hierarchical%20Bayesian%20approach%20for%20electrochemical%20impedance%20spectroscopy%20(EIS)%20inversion&rft.jtitle=Electrochimica%20acta&rft.au=Huang,%20Jake&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2021-01-20&rft.volume=367&rft.spage=137493&rft.pages=137493-&rft.artnum=137493&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137493&rft_dat=%3Cproquest_osti_%3E2489025406%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489025406&rft_id=info:pmid/&rft_els_id=S0013468620318867&rfr_iscdi=true