Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion
•A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-sou...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2021-01, Vol.367, p.137493, Article 137493 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 137493 |
container_title | Electrochimica acta |
container_volume | 367 |
creator | Huang, Jake Papac, Meagan O’Hayre, Ryan |
description | •A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-source Python package is provided for public use and further development.
[Display omitted]
Distribution-based analyses, such as the distribution of relaxation times (DRT) and the distribution of diffusion times (DDT), present model-free alternatives to equivalent circuit modeling for analysis of electrochemical impedance spectroscopy (EIS) data. However, reconstructing such distributions from noisy impedance data is an ill-posed problem that must be solved with specialized inversion algorithms, requiring careful control and tuning. Furthermore, most inversion algorithms developed to date can only solve problems of limited complexity. In this work, we present a new hierarchical Bayesian method for EIS inversion, leveraging efficient algorithms for optimization and Hamiltonian Monte Carlo (HMC) sampling to solve models of arbitrary complexity. We overcome the challenge of ad-hoc parameter tuning by encoding intrinsic characteristics of the DRT and DDT into flexible prior distributions and “pre-calibrating” the model to simulated data. This approach is versatile, highly robust to noise, and provides quantitative estimates of both the error structure of the data and the uncertainty in the recovered distributions. The model is validated with simulated data to demonstrate accurate recovery of the DRT and the DDT. The method also shows promise for simultaneous recovery of multiple distributions, raising the intriguing possibility of semi-autonomous EIS analysis and ad-hoc model construction. Finally, the practical utility of the method is illustrated with experimental data. Throughout, we draw comparisons to several recently published EIS inversion methodologies. |
doi_str_mv | 10.1016/j.electacta.2020.137493 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1755725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620318867</els_id><sourcerecordid>2489025406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-37245dfb607ca0481474bed3ff58e4b282138fbb645607e7738e6a7aafa64d293</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EEkvhGbDgAocs_hfb4batSqlUiQPlbE2cieLVbhzspNU-Dm-Kt0HcEJIlS6PfzHzffIS85WzLGdef9ls8oJ-hvK1golSlUY18RjbcGllJWzfPyYYxLiulrX5JXuW8Z4wZbdiG_LqPj5C6TFNslzxTWOY4xmNcMg3HCTsYPdI8lQUpZh-nE4URDqcc8me6ox4OoU0wY0eHgAmSH0Kp0Us4YQ4wUpimFMEPtI-JPulM0Q94fKL-seDD9e33jzSMD5hyiONr8qKHQ8Y3f_4L8uPL9f3V1-ru283t1e6u8oo3cyWNUHXXt5oZD0xZroxqsZN9X1tUrbCCS9u3rVZ1QdAYaVGDAehBq0408oK8W-fGPAeXfZjRDz6OY5HmuKlrI-oCvV-hYuvngnl2-7ikcpHshLINE7ViulBmpXzxlBP2bkrhCOnkOHPn0Nze_Q3NnUNza2ilc7d2YnH6UE56FoLlRF1IZx1dDP-d8Rs68KgX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489025406</pqid></control><display><type>article</type><title>Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Jake ; Papac, Meagan ; O’Hayre, Ryan</creator><creatorcontrib>Huang, Jake ; Papac, Meagan ; O’Hayre, Ryan ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>•A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-source Python package is provided for public use and further development.
[Display omitted]
Distribution-based analyses, such as the distribution of relaxation times (DRT) and the distribution of diffusion times (DDT), present model-free alternatives to equivalent circuit modeling for analysis of electrochemical impedance spectroscopy (EIS) data. However, reconstructing such distributions from noisy impedance data is an ill-posed problem that must be solved with specialized inversion algorithms, requiring careful control and tuning. Furthermore, most inversion algorithms developed to date can only solve problems of limited complexity. In this work, we present a new hierarchical Bayesian method for EIS inversion, leveraging efficient algorithms for optimization and Hamiltonian Monte Carlo (HMC) sampling to solve models of arbitrary complexity. We overcome the challenge of ad-hoc parameter tuning by encoding intrinsic characteristics of the DRT and DDT into flexible prior distributions and “pre-calibrating” the model to simulated data. This approach is versatile, highly robust to noise, and provides quantitative estimates of both the error structure of the data and the uncertainty in the recovered distributions. The model is validated with simulated data to demonstrate accurate recovery of the DRT and the DDT. The method also shows promise for simultaneous recovery of multiple distributions, raising the intriguing possibility of semi-autonomous EIS analysis and ad-hoc model construction. Finally, the practical utility of the method is illustrated with experimental data. Throughout, we draw comparisons to several recently published EIS inversion methodologies.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137493</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Batteries ; Bayesian analysis ; Bayesian inference ; Complexity ; Computer simulation ; Distribution of diffusion times ; Distribution of relaxation times ; Electrochemical impedance spectroscopy ; Equivalent circuits ; Fuel cells ; Hamiltonian Monte Carlo ; Ill posed problems ; MATERIALS SCIENCE ; Optimization ; Robustness ; Spectroscopic analysis ; Spectrum analysis ; Tuning</subject><ispartof>Electrochimica acta, 2021-01, Vol.367, p.137493, Article 137493</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 20, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-37245dfb607ca0481474bed3ff58e4b282138fbb645607e7738e6a7aafa64d293</citedby><cites>FETCH-LOGICAL-c419t-37245dfb607ca0481474bed3ff58e4b282138fbb645607e7738e6a7aafa64d293</cites><orcidid>0000-0002-9487-5128 ; 0000-0003-3762-3052 ; 0000000294875128 ; 0000000337623052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.137493$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1755725$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jake</creatorcontrib><creatorcontrib>Papac, Meagan</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion</title><title>Electrochimica acta</title><description>•A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-source Python package is provided for public use and further development.
[Display omitted]
Distribution-based analyses, such as the distribution of relaxation times (DRT) and the distribution of diffusion times (DDT), present model-free alternatives to equivalent circuit modeling for analysis of electrochemical impedance spectroscopy (EIS) data. However, reconstructing such distributions from noisy impedance data is an ill-posed problem that must be solved with specialized inversion algorithms, requiring careful control and tuning. Furthermore, most inversion algorithms developed to date can only solve problems of limited complexity. In this work, we present a new hierarchical Bayesian method for EIS inversion, leveraging efficient algorithms for optimization and Hamiltonian Monte Carlo (HMC) sampling to solve models of arbitrary complexity. We overcome the challenge of ad-hoc parameter tuning by encoding intrinsic characteristics of the DRT and DDT into flexible prior distributions and “pre-calibrating” the model to simulated data. This approach is versatile, highly robust to noise, and provides quantitative estimates of both the error structure of the data and the uncertainty in the recovered distributions. The model is validated with simulated data to demonstrate accurate recovery of the DRT and the DDT. The method also shows promise for simultaneous recovery of multiple distributions, raising the intriguing possibility of semi-autonomous EIS analysis and ad-hoc model construction. Finally, the practical utility of the method is illustrated with experimental data. Throughout, we draw comparisons to several recently published EIS inversion methodologies.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Distribution of diffusion times</subject><subject>Distribution of relaxation times</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Equivalent circuits</subject><subject>Fuel cells</subject><subject>Hamiltonian Monte Carlo</subject><subject>Ill posed problems</subject><subject>MATERIALS SCIENCE</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Tuning</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi0EEkvhGbDgAocs_hfb4batSqlUiQPlbE2cieLVbhzspNU-Dm-Kt0HcEJIlS6PfzHzffIS85WzLGdef9ls8oJ-hvK1golSlUY18RjbcGllJWzfPyYYxLiulrX5JXuW8Z4wZbdiG_LqPj5C6TFNslzxTWOY4xmNcMg3HCTsYPdI8lQUpZh-nE4URDqcc8me6ox4OoU0wY0eHgAmSH0Kp0Us4YQ4wUpimFMEPtI-JPulM0Q94fKL-seDD9e33jzSMD5hyiONr8qKHQ8Y3f_4L8uPL9f3V1-ru283t1e6u8oo3cyWNUHXXt5oZD0xZroxqsZN9X1tUrbCCS9u3rVZ1QdAYaVGDAehBq0408oK8W-fGPAeXfZjRDz6OY5HmuKlrI-oCvV-hYuvngnl2-7ikcpHshLINE7ViulBmpXzxlBP2bkrhCOnkOHPn0Nze_Q3NnUNza2ilc7d2YnH6UE56FoLlRF1IZx1dDP-d8Rs68KgX</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Huang, Jake</creator><creator>Papac, Meagan</creator><creator>O’Hayre, Ryan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9487-5128</orcidid><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/0000000294875128</orcidid><orcidid>https://orcid.org/0000000337623052</orcidid></search><sort><creationdate>20210120</creationdate><title>Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion</title><author>Huang, Jake ; Papac, Meagan ; O’Hayre, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-37245dfb607ca0481474bed3ff58e4b282138fbb645607e7738e6a7aafa64d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Distribution of diffusion times</topic><topic>Distribution of relaxation times</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Equivalent circuits</topic><topic>Fuel cells</topic><topic>Hamiltonian Monte Carlo</topic><topic>Ill posed problems</topic><topic>MATERIALS SCIENCE</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jake</creatorcontrib><creatorcontrib>Papac, Meagan</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jake</au><au>Papac, Meagan</au><au>O’Hayre, Ryan</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion</atitle><jtitle>Electrochimica acta</jtitle><date>2021-01-20</date><risdate>2021</risdate><volume>367</volume><spage>137493</spage><pages>137493-</pages><artnum>137493</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•A hierarchical Bayesian model was developed for generalized EIS inversion.•Hamiltonian Monte Carlo sampling and L-BFGS optimization algorithms enable efficient solution of complex and nonlinear models.•The algorithm can recover the DRT, the DDT, or multiple distributions simultaneously.•An open-source Python package is provided for public use and further development.
[Display omitted]
Distribution-based analyses, such as the distribution of relaxation times (DRT) and the distribution of diffusion times (DDT), present model-free alternatives to equivalent circuit modeling for analysis of electrochemical impedance spectroscopy (EIS) data. However, reconstructing such distributions from noisy impedance data is an ill-posed problem that must be solved with specialized inversion algorithms, requiring careful control and tuning. Furthermore, most inversion algorithms developed to date can only solve problems of limited complexity. In this work, we present a new hierarchical Bayesian method for EIS inversion, leveraging efficient algorithms for optimization and Hamiltonian Monte Carlo (HMC) sampling to solve models of arbitrary complexity. We overcome the challenge of ad-hoc parameter tuning by encoding intrinsic characteristics of the DRT and DDT into flexible prior distributions and “pre-calibrating” the model to simulated data. This approach is versatile, highly robust to noise, and provides quantitative estimates of both the error structure of the data and the uncertainty in the recovered distributions. The model is validated with simulated data to demonstrate accurate recovery of the DRT and the DDT. The method also shows promise for simultaneous recovery of multiple distributions, raising the intriguing possibility of semi-autonomous EIS analysis and ad-hoc model construction. Finally, the practical utility of the method is illustrated with experimental data. Throughout, we draw comparisons to several recently published EIS inversion methodologies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137493</doi><orcidid>https://orcid.org/0000-0002-9487-5128</orcidid><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/0000000294875128</orcidid><orcidid>https://orcid.org/0000000337623052</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2021-01, Vol.367, p.137493, Article 137493 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_osti_scitechconnect_1755725 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Batteries Bayesian analysis Bayesian inference Complexity Computer simulation Distribution of diffusion times Distribution of relaxation times Electrochemical impedance spectroscopy Equivalent circuits Fuel cells Hamiltonian Monte Carlo Ill posed problems MATERIALS SCIENCE Optimization Robustness Spectroscopic analysis Spectrum analysis Tuning |
title | Towards robust autonomous impedance spectroscopy analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20robust%20autonomous%20impedance%20spectroscopy%20analysis:%20A%20calibrated%20hierarchical%20Bayesian%20approach%20for%20electrochemical%20impedance%20spectroscopy%20(EIS)%20inversion&rft.jtitle=Electrochimica%20acta&rft.au=Huang,%20Jake&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2021-01-20&rft.volume=367&rft.spage=137493&rft.pages=137493-&rft.artnum=137493&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137493&rft_dat=%3Cproquest_osti_%3E2489025406%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489025406&rft_id=info:pmid/&rft_els_id=S0013468620318867&rfr_iscdi=true |