Spent fuel nondestructive assay integrated characterization from active neutron, passive neutron, and passive gamma
Spent nuclear fuel comprises a wide range of irradiated isotopic material compositions, and characterization through nondestructive measurements is beneficial in verifying declared parameters before the fuel is placed in storage, final disposal, and/or reprocessed. This paper discusses results from...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2020-12, Vol.988 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
container_volume | 988 |
creator | Trellue, Holly Renee McMath, Garrett Earl Trahan, Alexis Chanel Favalli, Andrea Burr, Thomas Lee Sjoland, Anders Backstrom, Ulrika |
description | Spent nuclear fuel comprises a wide range of irradiated isotopic material compositions, and characterization through nondestructive measurements is beneficial in verifying declared parameters before the fuel is placed in storage, final disposal, and/or reprocessed. This paper discusses results from three nondestructive assay instruments, including passive gamma, passive neutron, and active neutron methods, that measured fifty spent fuel assemblies at the Clab interim storage facility in Sweden. Here, integrated analysis of the measurements from the three different instruments allowed parametric assessments of cooling time, burnup, neutron multiplication, fissile mass, initial enrichment, and decay heat of each individual fuel assembly. Passive gamma measurements were found to be the most beneficial in predicting cooling time, passive neutron for determining burnup, active neutron in estimating initial enrichment, and both passive and total neutron for multiplication correlations. Fissile mass was best estimated using any combination of any two of the instruments such that corrections for isotopic changes in the fuel could be accounted for with the first set of measurements and multiplication of the assembly in the second. In conclusion, the nondestructive assay technologies demonstrated through this effort enhance the characterization of spent nuclear fuel assemblies. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1735903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735903</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_17359033</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRYMoWB__EFxbSFtq27Uo7nUvQzrVSDuRzFTQr1dQBHfezYHDuQMVJWWRxlVerIYqMsmqjCtj0rGaMF_Ma1VRRor3VyTRTY-tJk81soTeiruhBma4a0eCpwCCtbZnCGAFg3uAOE-6Cb7T8K4Jewmelvr6-v0IoPorT9B1MFOjBlrG-YdTtdhuDutd7Fncka0TtGfridDKMSmyvDJZ9lf0BGrITqM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spent fuel nondestructive assay integrated characterization from active neutron, passive neutron, and passive gamma</title><source>Access via ScienceDirect (Elsevier)</source><creator>Trellue, Holly Renee ; McMath, Garrett Earl ; Trahan, Alexis Chanel ; Favalli, Andrea ; Burr, Thomas Lee ; Sjoland, Anders ; Backstrom, Ulrika</creator><creatorcontrib>Trellue, Holly Renee ; McMath, Garrett Earl ; Trahan, Alexis Chanel ; Favalli, Andrea ; Burr, Thomas Lee ; Sjoland, Anders ; Backstrom, Ulrika ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Spent nuclear fuel comprises a wide range of irradiated isotopic material compositions, and characterization through nondestructive measurements is beneficial in verifying declared parameters before the fuel is placed in storage, final disposal, and/or reprocessed. This paper discusses results from three nondestructive assay instruments, including passive gamma, passive neutron, and active neutron methods, that measured fifty spent fuel assemblies at the Clab interim storage facility in Sweden. Here, integrated analysis of the measurements from the three different instruments allowed parametric assessments of cooling time, burnup, neutron multiplication, fissile mass, initial enrichment, and decay heat of each individual fuel assembly. Passive gamma measurements were found to be the most beneficial in predicting cooling time, passive neutron for determining burnup, active neutron in estimating initial enrichment, and both passive and total neutron for multiplication correlations. Fissile mass was best estimated using any combination of any two of the instruments such that corrections for isotopic changes in the fuel could be accounted for with the first set of measurements and multiplication of the assembly in the second. In conclusion, the nondestructive assay technologies demonstrated through this effort enhance the characterization of spent nuclear fuel assemblies.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Differential die-away ; International safeguards ; Nondestructive assay ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Spent fuel characterization</subject><ispartof>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2020-12, Vol.988</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000320510852 ; 000000033940470X ; 0000000272989706 ; 0000000229161700 ; 0000000189288423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1735903$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Trellue, Holly Renee</creatorcontrib><creatorcontrib>McMath, Garrett Earl</creatorcontrib><creatorcontrib>Trahan, Alexis Chanel</creatorcontrib><creatorcontrib>Favalli, Andrea</creatorcontrib><creatorcontrib>Burr, Thomas Lee</creatorcontrib><creatorcontrib>Sjoland, Anders</creatorcontrib><creatorcontrib>Backstrom, Ulrika</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Spent fuel nondestructive assay integrated characterization from active neutron, passive neutron, and passive gamma</title><title>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Spent nuclear fuel comprises a wide range of irradiated isotopic material compositions, and characterization through nondestructive measurements is beneficial in verifying declared parameters before the fuel is placed in storage, final disposal, and/or reprocessed. This paper discusses results from three nondestructive assay instruments, including passive gamma, passive neutron, and active neutron methods, that measured fifty spent fuel assemblies at the Clab interim storage facility in Sweden. Here, integrated analysis of the measurements from the three different instruments allowed parametric assessments of cooling time, burnup, neutron multiplication, fissile mass, initial enrichment, and decay heat of each individual fuel assembly. Passive gamma measurements were found to be the most beneficial in predicting cooling time, passive neutron for determining burnup, active neutron in estimating initial enrichment, and both passive and total neutron for multiplication correlations. Fissile mass was best estimated using any combination of any two of the instruments such that corrections for isotopic changes in the fuel could be accounted for with the first set of measurements and multiplication of the assembly in the second. In conclusion, the nondestructive assay technologies demonstrated through this effort enhance the characterization of spent nuclear fuel assemblies.</description><subject>Differential die-away</subject><subject>International safeguards</subject><subject>Nondestructive assay</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Spent fuel characterization</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNi8sKwjAQRYMoWB__EFxbSFtq27Uo7nUvQzrVSDuRzFTQr1dQBHfezYHDuQMVJWWRxlVerIYqMsmqjCtj0rGaMF_Ma1VRRor3VyTRTY-tJk81soTeiruhBma4a0eCpwCCtbZnCGAFg3uAOE-6Cb7T8K4Jewmelvr6-v0IoPorT9B1MFOjBlrG-YdTtdhuDutd7Fncka0TtGfridDKMSmyvDJZ9lf0BGrITqM</recordid><startdate>20201205</startdate><enddate>20201205</enddate><creator>Trellue, Holly Renee</creator><creator>McMath, Garrett Earl</creator><creator>Trahan, Alexis Chanel</creator><creator>Favalli, Andrea</creator><creator>Burr, Thomas Lee</creator><creator>Sjoland, Anders</creator><creator>Backstrom, Ulrika</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000320510852</orcidid><orcidid>https://orcid.org/000000033940470X</orcidid><orcidid>https://orcid.org/0000000272989706</orcidid><orcidid>https://orcid.org/0000000229161700</orcidid><orcidid>https://orcid.org/0000000189288423</orcidid></search><sort><creationdate>20201205</creationdate><title>Spent fuel nondestructive assay integrated characterization from active neutron, passive neutron, and passive gamma</title><author>Trellue, Holly Renee ; McMath, Garrett Earl ; Trahan, Alexis Chanel ; Favalli, Andrea ; Burr, Thomas Lee ; Sjoland, Anders ; Backstrom, Ulrika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_17359033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Differential die-away</topic><topic>International safeguards</topic><topic>Nondestructive assay</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Spent fuel characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trellue, Holly Renee</creatorcontrib><creatorcontrib>McMath, Garrett Earl</creatorcontrib><creatorcontrib>Trahan, Alexis Chanel</creatorcontrib><creatorcontrib>Favalli, Andrea</creatorcontrib><creatorcontrib>Burr, Thomas Lee</creatorcontrib><creatorcontrib>Sjoland, Anders</creatorcontrib><creatorcontrib>Backstrom, Ulrika</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trellue, Holly Renee</au><au>McMath, Garrett Earl</au><au>Trahan, Alexis Chanel</au><au>Favalli, Andrea</au><au>Burr, Thomas Lee</au><au>Sjoland, Anders</au><au>Backstrom, Ulrika</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spent fuel nondestructive assay integrated characterization from active neutron, passive neutron, and passive gamma</atitle><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2020-12-05</date><risdate>2020</risdate><volume>988</volume><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Spent nuclear fuel comprises a wide range of irradiated isotopic material compositions, and characterization through nondestructive measurements is beneficial in verifying declared parameters before the fuel is placed in storage, final disposal, and/or reprocessed. This paper discusses results from three nondestructive assay instruments, including passive gamma, passive neutron, and active neutron methods, that measured fifty spent fuel assemblies at the Clab interim storage facility in Sweden. Here, integrated analysis of the measurements from the three different instruments allowed parametric assessments of cooling time, burnup, neutron multiplication, fissile mass, initial enrichment, and decay heat of each individual fuel assembly. Passive gamma measurements were found to be the most beneficial in predicting cooling time, passive neutron for determining burnup, active neutron in estimating initial enrichment, and both passive and total neutron for multiplication correlations. Fissile mass was best estimated using any combination of any two of the instruments such that corrections for isotopic changes in the fuel could be accounted for with the first set of measurements and multiplication of the assembly in the second. In conclusion, the nondestructive assay technologies demonstrated through this effort enhance the characterization of spent nuclear fuel assemblies.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000320510852</orcidid><orcidid>https://orcid.org/000000033940470X</orcidid><orcidid>https://orcid.org/0000000272989706</orcidid><orcidid>https://orcid.org/0000000229161700</orcidid><orcidid>https://orcid.org/0000000189288423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2020-12, Vol.988 |
issn | 0168-9002 1872-9576 |
language | eng |
recordid | cdi_osti_scitechconnect_1735903 |
source | Access via ScienceDirect (Elsevier) |
subjects | Differential die-away International safeguards Nondestructive assay NUCLEAR PHYSICS AND RADIATION PHYSICS Spent fuel characterization |
title | Spent fuel nondestructive assay integrated characterization from active neutron, passive neutron, and passive gamma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spent%20fuel%20nondestructive%20assay%20integrated%20characterization%20from%20active%20neutron,%20passive%20neutron,%20and%20passive%20gamma&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Trellue,%20Holly%20Renee&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-12-05&rft.volume=988&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/&rft_dat=%3Costi%3E1735903%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |