A viscoelastic model for seismic attenuation using fractal mechanical networks

SUMMARY Seismic attenuation (quantified by the quality factor Q) has a significant impact on the seismic waveforms, especially in the fluid-saturated rocks. This dissipative process can be phenomenologically represented by viscoelastic models. Previous seismological studies show that the Q value of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2021-03, Vol.224 (3), p.1658-1669
Hauptverfasser: Xing, Guangchi, Zhu, Tieyuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1669
container_issue 3
container_start_page 1658
container_title Geophysical journal international
container_volume 224
creator Xing, Guangchi
Zhu, Tieyuan
description SUMMARY Seismic attenuation (quantified by the quality factor Q) has a significant impact on the seismic waveforms, especially in the fluid-saturated rocks. This dissipative process can be phenomenologically represented by viscoelastic models. Previous seismological studies show that the Q value of Earth media exhibits a nearly frequency-independent behaviour (often referred to as constant-Q in literature) in the seismic frequency range. Such attenuation can be described by the mathematical Kjartansson constant-Q model, which lacks of a physical representation in the viscoelastic sense. Inspired by the fractal nature of the pore fluid distribution in patchy-saturated rocks, here we propose two fractal mechanical network (FMN) models, that is, a fractal tree model and a quasi-fractal ladder model, to phenomenologically represent the frequency-independent Q behaviour. As with the classic viscoelastic models, the FMN models are composed of mechanical elements (spring and dashpots) arranged in different hierarchical patterns. A particular parametrization of each model can produce the same complex modulus as in the Kjartansson model, which leads to the constant-Q. Applying the theory to several typical rock samples, we find that the seismic attenuation signature of these rocks can be accurately represented by either one of the FMN models. Besides, we demonstrate that the ladder model in particular exhibits the realistic multiscale fractal structure of the saturated rocks. Therefore, the FMN models as a proxy could provide a new way to estimate the microscopic rock structure property from macroscopic seismic attenuation observation.
doi_str_mv 10.1093/gji/ggaa549
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_osti_scitechconnect_1735385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggaa549</oup_id><sourcerecordid>10.1093/gji/ggaa549</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-558fec23c9532fa57a3cbaf4482f0620d970e936f94a0fa205889e449337eca03</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsr_0Bw4UbGJpNkZrIsxS8oulHoLjzTZEydSUqSKv57I-3a1bs8DpfLQeiSkltKJJv1GzfrewDB5RGaUNaIqubN6hhNiBRNJThZnaKzlDaEUE55N0HPc_zlkg5mgJSdxmNYmwHbEHEyLo3lAzkbv4Psgse75HyPbQSdYcCj0R_gnS7Rm_wd4mc6RycWhmQuDneK3u7vXheP1fLl4WkxX1bAKM-VEJ01umZaClZbEC0w_Q6W8662pKnJWrbESNZYyYFYqInoOmk4l4y1RgNhU3S17w1ltUra5bJFB--Nzoq2TLBOFOhmD-kYUorGqm10I8QfRYn686WKL3XwVejrQ-Vu-y_4C8SubN0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A viscoelastic model for seismic attenuation using fractal mechanical networks</title><source>Oxford Journals Open Access Collection</source><creator>Xing, Guangchi ; Zhu, Tieyuan</creator><creatorcontrib>Xing, Guangchi ; Zhu, Tieyuan</creatorcontrib><description>SUMMARY Seismic attenuation (quantified by the quality factor Q) has a significant impact on the seismic waveforms, especially in the fluid-saturated rocks. This dissipative process can be phenomenologically represented by viscoelastic models. Previous seismological studies show that the Q value of Earth media exhibits a nearly frequency-independent behaviour (often referred to as constant-Q in literature) in the seismic frequency range. Such attenuation can be described by the mathematical Kjartansson constant-Q model, which lacks of a physical representation in the viscoelastic sense. Inspired by the fractal nature of the pore fluid distribution in patchy-saturated rocks, here we propose two fractal mechanical network (FMN) models, that is, a fractal tree model and a quasi-fractal ladder model, to phenomenologically represent the frequency-independent Q behaviour. As with the classic viscoelastic models, the FMN models are composed of mechanical elements (spring and dashpots) arranged in different hierarchical patterns. A particular parametrization of each model can produce the same complex modulus as in the Kjartansson model, which leads to the constant-Q. Applying the theory to several typical rock samples, we find that the seismic attenuation signature of these rocks can be accurately represented by either one of the FMN models. Besides, we demonstrate that the ladder model in particular exhibits the realistic multiscale fractal structure of the saturated rocks. Therefore, the FMN models as a proxy could provide a new way to estimate the microscopic rock structure property from macroscopic seismic attenuation observation.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggaa549</identifier><language>eng</language><publisher>United Kingdom: Oxford University Press</publisher><ispartof>Geophysical journal international, 2021-03, Vol.224 (3), p.1658-1669</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-558fec23c9532fa57a3cbaf4482f0620d970e936f94a0fa205889e449337eca03</citedby><cites>FETCH-LOGICAL-a314t-558fec23c9532fa57a3cbaf4482f0620d970e936f94a0fa205889e449337eca03</cites><orcidid>0000-0002-3683-8919 ; 0000-0003-3172-8240 ; 0000000236838919 ; 0000000331728240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/gji/ggaa549$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1735385$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Guangchi</creatorcontrib><creatorcontrib>Zhu, Tieyuan</creatorcontrib><title>A viscoelastic model for seismic attenuation using fractal mechanical networks</title><title>Geophysical journal international</title><description>SUMMARY Seismic attenuation (quantified by the quality factor Q) has a significant impact on the seismic waveforms, especially in the fluid-saturated rocks. This dissipative process can be phenomenologically represented by viscoelastic models. Previous seismological studies show that the Q value of Earth media exhibits a nearly frequency-independent behaviour (often referred to as constant-Q in literature) in the seismic frequency range. Such attenuation can be described by the mathematical Kjartansson constant-Q model, which lacks of a physical representation in the viscoelastic sense. Inspired by the fractal nature of the pore fluid distribution in patchy-saturated rocks, here we propose two fractal mechanical network (FMN) models, that is, a fractal tree model and a quasi-fractal ladder model, to phenomenologically represent the frequency-independent Q behaviour. As with the classic viscoelastic models, the FMN models are composed of mechanical elements (spring and dashpots) arranged in different hierarchical patterns. A particular parametrization of each model can produce the same complex modulus as in the Kjartansson model, which leads to the constant-Q. Applying the theory to several typical rock samples, we find that the seismic attenuation signature of these rocks can be accurately represented by either one of the FMN models. Besides, we demonstrate that the ladder model in particular exhibits the realistic multiscale fractal structure of the saturated rocks. Therefore, the FMN models as a proxy could provide a new way to estimate the microscopic rock structure property from macroscopic seismic attenuation observation.</description><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsr_0Bw4UbGJpNkZrIsxS8oulHoLjzTZEydSUqSKv57I-3a1bs8DpfLQeiSkltKJJv1GzfrewDB5RGaUNaIqubN6hhNiBRNJThZnaKzlDaEUE55N0HPc_zlkg5mgJSdxmNYmwHbEHEyLo3lAzkbv4Psgse75HyPbQSdYcCj0R_gnS7Rm_wd4mc6RycWhmQuDneK3u7vXheP1fLl4WkxX1bAKM-VEJ01umZaClZbEC0w_Q6W8662pKnJWrbESNZYyYFYqInoOmk4l4y1RgNhU3S17w1ltUra5bJFB--Nzoq2TLBOFOhmD-kYUorGqm10I8QfRYn686WKL3XwVejrQ-Vu-y_4C8SubN0</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Xing, Guangchi</creator><creator>Zhu, Tieyuan</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3683-8919</orcidid><orcidid>https://orcid.org/0000-0003-3172-8240</orcidid><orcidid>https://orcid.org/0000000236838919</orcidid><orcidid>https://orcid.org/0000000331728240</orcidid></search><sort><creationdate>20210301</creationdate><title>A viscoelastic model for seismic attenuation using fractal mechanical networks</title><author>Xing, Guangchi ; Zhu, Tieyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-558fec23c9532fa57a3cbaf4482f0620d970e936f94a0fa205889e449337eca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Guangchi</creatorcontrib><creatorcontrib>Zhu, Tieyuan</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Guangchi</au><au>Zhu, Tieyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A viscoelastic model for seismic attenuation using fractal mechanical networks</atitle><jtitle>Geophysical journal international</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>224</volume><issue>3</issue><spage>1658</spage><epage>1669</epage><pages>1658-1669</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY Seismic attenuation (quantified by the quality factor Q) has a significant impact on the seismic waveforms, especially in the fluid-saturated rocks. This dissipative process can be phenomenologically represented by viscoelastic models. Previous seismological studies show that the Q value of Earth media exhibits a nearly frequency-independent behaviour (often referred to as constant-Q in literature) in the seismic frequency range. Such attenuation can be described by the mathematical Kjartansson constant-Q model, which lacks of a physical representation in the viscoelastic sense. Inspired by the fractal nature of the pore fluid distribution in patchy-saturated rocks, here we propose two fractal mechanical network (FMN) models, that is, a fractal tree model and a quasi-fractal ladder model, to phenomenologically represent the frequency-independent Q behaviour. As with the classic viscoelastic models, the FMN models are composed of mechanical elements (spring and dashpots) arranged in different hierarchical patterns. A particular parametrization of each model can produce the same complex modulus as in the Kjartansson model, which leads to the constant-Q. Applying the theory to several typical rock samples, we find that the seismic attenuation signature of these rocks can be accurately represented by either one of the FMN models. Besides, we demonstrate that the ladder model in particular exhibits the realistic multiscale fractal structure of the saturated rocks. Therefore, the FMN models as a proxy could provide a new way to estimate the microscopic rock structure property from macroscopic seismic attenuation observation.</abstract><cop>United Kingdom</cop><pub>Oxford University Press</pub><doi>10.1093/gji/ggaa549</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3683-8919</orcidid><orcidid>https://orcid.org/0000-0003-3172-8240</orcidid><orcidid>https://orcid.org/0000000236838919</orcidid><orcidid>https://orcid.org/0000000331728240</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2021-03, Vol.224 (3), p.1658-1669
issn 0956-540X
1365-246X
language eng
recordid cdi_osti_scitechconnect_1735385
source Oxford Journals Open Access Collection
title A viscoelastic model for seismic attenuation using fractal mechanical networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20viscoelastic%20model%20for%20seismic%20attenuation%20using%20fractal%20mechanical%20networks&rft.jtitle=Geophysical%20journal%20international&rft.au=Xing,%20Guangchi&rft.date=2021-03-01&rft.volume=224&rft.issue=3&rft.spage=1658&rft.epage=1669&rft.pages=1658-1669&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggaa549&rft_dat=%3Coup_TOX%3E10.1093/gji/ggaa549%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggaa549&rfr_iscdi=true