Magnetic Levitation in Chemistry, Materials Science, and Biochemistry

All matter has density. The recorded uses of density to characterize matter date back to as early as ca. 250 BC, when Archimedes was believed to have solved “The Puzzle of The King's Crown” using density.[1] Today, measurements of density are used to separate and characterize a range of materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2020-10, Vol.59 (41), p.17810-17855
Hauptverfasser: Ge, Shencheng, Nemiroski, Alex, Mirica, Katherine A., Mace, Charles R., Hennek, Jonathan W., Kumar, Ashok A., Whitesides, George M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17855
container_issue 41
container_start_page 17810
container_title Angewandte Chemie (International ed.)
container_volume 59
creator Ge, Shencheng
Nemiroski, Alex
Mirica, Katherine A.
Mace, Charles R.
Hennek, Jonathan W.
Kumar, Ashok A.
Whitesides, George M.
description All matter has density. The recorded uses of density to characterize matter date back to as early as ca. 250 BC, when Archimedes was believed to have solved “The Puzzle of The King's Crown” using density.[1] Today, measurements of density are used to separate and characterize a range of materials (including cells and organisms), and their chemical and/or physical changes in time and space. This Review describes a density‐based technique—magnetic levitation (which we call “MagLev” for simplicity)—developed and used to solve problems in the fields of chemistry, materials science, and biochemistry. MagLev has two principal characteristics—simplicity, and applicability to a wide range of materials—that make it useful for a number of applications (for example, characterization of materials, quality control of manufactured plastic parts, self‐assembly of objects in 3D, separation of different types of biological cells, and bioanalyses). Its simplicity and breadth of applications also enable its use in low‐resource settings (for example—in economically developing regions—in evaluating water/food quality, and in diagnosing disease). A density‐based technique—magnetic levitation (MagLev)—developed and used to solve problems in the fields of chemistry, materials science, and biochemistry is described in this Review. MagLev has two principal characteristics: i) it is density‐based, and thus in principle applicable to all materials, and ii) it is simple—a characteristic that makes it useful for a number of applications.
doi_str_mv 10.1002/anie.201903391
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1734812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340037431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5431-f7b98e996c85d82570b1b43b28168b1887ff4582ae994d1c9399cf3fc221d4483</originalsourceid><addsrcrecordid>eNqF0b1PGzEYBnCrApVAuzJWJ7owcKlf23e2RxoFiBRgaDtbPt97xCjxpWcHlP8eo_AhsbDYHn5-9NoPIcdAx0Ap-2WDxzGjoCnnGr6QEVQMSi4l38tnwXkpVQUH5DDG--yVovVXcsAB6qqq6YhMr-1dwORdMccHn2zyfSh8KCYLXPmYhu1ZcW0TDt4uY_HHeQwOzwob2uK3790r-kb2uwzw-8t-RP5dTP9Orsr57eVscj4vXSU4lJ1stEKta6eqVrFK0gYawRumoFYNKCW7TlSK2WxEC05zrV3HO8cYtEIofkROdrl9TN5E5xO6hetDQJcMSC4UsIxOd2g99P83GJPJQzpcLm3AfhMN44JSLvNAmf78QO_7zRDyEwwTopag8prVeKfc0Mc4YGfWg1_ZYWuAmucWzHML5q2FfOHHS-ymWWH7xl-_PQO9A49-idtP4sz5zWz6Hv4E52WQqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446718446</pqid></control><display><type>article</type><title>Magnetic Levitation in Chemistry, Materials Science, and Biochemistry</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ge, Shencheng ; Nemiroski, Alex ; Mirica, Katherine A. ; Mace, Charles R. ; Hennek, Jonathan W. ; Kumar, Ashok A. ; Whitesides, George M.</creator><creatorcontrib>Ge, Shencheng ; Nemiroski, Alex ; Mirica, Katherine A. ; Mace, Charles R. ; Hennek, Jonathan W. ; Kumar, Ashok A. ; Whitesides, George M.</creatorcontrib><description>All matter has density. The recorded uses of density to characterize matter date back to as early as ca. 250 BC, when Archimedes was believed to have solved “The Puzzle of The King's Crown” using density.[1] Today, measurements of density are used to separate and characterize a range of materials (including cells and organisms), and their chemical and/or physical changes in time and space. This Review describes a density‐based technique—magnetic levitation (which we call “MagLev” for simplicity)—developed and used to solve problems in the fields of chemistry, materials science, and biochemistry. MagLev has two principal characteristics—simplicity, and applicability to a wide range of materials—that make it useful for a number of applications (for example, characterization of materials, quality control of manufactured plastic parts, self‐assembly of objects in 3D, separation of different types of biological cells, and bioanalyses). Its simplicity and breadth of applications also enable its use in low‐resource settings (for example—in economically developing regions—in evaluating water/food quality, and in diagnosing disease). A density‐based technique—magnetic levitation (MagLev)—developed and used to solve problems in the fields of chemistry, materials science, and biochemistry is described in this Review. MagLev has two principal characteristics: i) it is density‐based, and thus in principle applicable to all materials, and ii) it is simple—a characteristic that makes it useful for a number of applications.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201903391</identifier><identifier>PMID: 31165560</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biochemistry ; Density ; density-based measurement ; Food quality ; Magnetic levitation ; magnetic properties ; Magnetics ; Materials Science ; Quality control ; Water quality</subject><ispartof>Angewandte Chemie (International ed.), 2020-10, Vol.59 (41), p.17810-17855</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5431-f7b98e996c85d82570b1b43b28168b1887ff4582ae994d1c9399cf3fc221d4483</citedby><cites>FETCH-LOGICAL-c5431-f7b98e996c85d82570b1b43b28168b1887ff4582ae994d1c9399cf3fc221d4483</cites><orcidid>0000-0002-9345-2481 ; 0000-0001-9580-6784 ; 0000-0001-9451-2442 ; 0000000293452481 ; 0000000195806784 ; 0000000194512442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201903391$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201903391$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31165560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1734812$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Shencheng</creatorcontrib><creatorcontrib>Nemiroski, Alex</creatorcontrib><creatorcontrib>Mirica, Katherine A.</creatorcontrib><creatorcontrib>Mace, Charles R.</creatorcontrib><creatorcontrib>Hennek, Jonathan W.</creatorcontrib><creatorcontrib>Kumar, Ashok A.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><title>Magnetic Levitation in Chemistry, Materials Science, and Biochemistry</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>All matter has density. The recorded uses of density to characterize matter date back to as early as ca. 250 BC, when Archimedes was believed to have solved “The Puzzle of The King's Crown” using density.[1] Today, measurements of density are used to separate and characterize a range of materials (including cells and organisms), and their chemical and/or physical changes in time and space. This Review describes a density‐based technique—magnetic levitation (which we call “MagLev” for simplicity)—developed and used to solve problems in the fields of chemistry, materials science, and biochemistry. MagLev has two principal characteristics—simplicity, and applicability to a wide range of materials—that make it useful for a number of applications (for example, characterization of materials, quality control of manufactured plastic parts, self‐assembly of objects in 3D, separation of different types of biological cells, and bioanalyses). Its simplicity and breadth of applications also enable its use in low‐resource settings (for example—in economically developing regions—in evaluating water/food quality, and in diagnosing disease). A density‐based technique—magnetic levitation (MagLev)—developed and used to solve problems in the fields of chemistry, materials science, and biochemistry is described in this Review. MagLev has two principal characteristics: i) it is density‐based, and thus in principle applicable to all materials, and ii) it is simple—a characteristic that makes it useful for a number of applications.</description><subject>Biochemistry</subject><subject>Density</subject><subject>density-based measurement</subject><subject>Food quality</subject><subject>Magnetic levitation</subject><subject>magnetic properties</subject><subject>Magnetics</subject><subject>Materials Science</subject><subject>Quality control</subject><subject>Water quality</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0b1PGzEYBnCrApVAuzJWJ7owcKlf23e2RxoFiBRgaDtbPt97xCjxpWcHlP8eo_AhsbDYHn5-9NoPIcdAx0Ap-2WDxzGjoCnnGr6QEVQMSi4l38tnwXkpVQUH5DDG--yVovVXcsAB6qqq6YhMr-1dwORdMccHn2zyfSh8KCYLXPmYhu1ZcW0TDt4uY_HHeQwOzwob2uK3790r-kb2uwzw-8t-RP5dTP9Orsr57eVscj4vXSU4lJ1stEKta6eqVrFK0gYawRumoFYNKCW7TlSK2WxEC05zrV3HO8cYtEIofkROdrl9TN5E5xO6hetDQJcMSC4UsIxOd2g99P83GJPJQzpcLm3AfhMN44JSLvNAmf78QO_7zRDyEwwTopag8prVeKfc0Mc4YGfWg1_ZYWuAmucWzHML5q2FfOHHS-ymWWH7xl-_PQO9A49-idtP4sz5zWz6Hv4E52WQqg</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Ge, Shencheng</creator><creator>Nemiroski, Alex</creator><creator>Mirica, Katherine A.</creator><creator>Mace, Charles R.</creator><creator>Hennek, Jonathan W.</creator><creator>Kumar, Ashok A.</creator><creator>Whitesides, George M.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9345-2481</orcidid><orcidid>https://orcid.org/0000-0001-9580-6784</orcidid><orcidid>https://orcid.org/0000-0001-9451-2442</orcidid><orcidid>https://orcid.org/0000000293452481</orcidid><orcidid>https://orcid.org/0000000195806784</orcidid><orcidid>https://orcid.org/0000000194512442</orcidid></search><sort><creationdate>20201005</creationdate><title>Magnetic Levitation in Chemistry, Materials Science, and Biochemistry</title><author>Ge, Shencheng ; Nemiroski, Alex ; Mirica, Katherine A. ; Mace, Charles R. ; Hennek, Jonathan W. ; Kumar, Ashok A. ; Whitesides, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5431-f7b98e996c85d82570b1b43b28168b1887ff4582ae994d1c9399cf3fc221d4483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry</topic><topic>Density</topic><topic>density-based measurement</topic><topic>Food quality</topic><topic>Magnetic levitation</topic><topic>magnetic properties</topic><topic>Magnetics</topic><topic>Materials Science</topic><topic>Quality control</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Shencheng</creatorcontrib><creatorcontrib>Nemiroski, Alex</creatorcontrib><creatorcontrib>Mirica, Katherine A.</creatorcontrib><creatorcontrib>Mace, Charles R.</creatorcontrib><creatorcontrib>Hennek, Jonathan W.</creatorcontrib><creatorcontrib>Kumar, Ashok A.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Shencheng</au><au>Nemiroski, Alex</au><au>Mirica, Katherine A.</au><au>Mace, Charles R.</au><au>Hennek, Jonathan W.</au><au>Kumar, Ashok A.</au><au>Whitesides, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Levitation in Chemistry, Materials Science, and Biochemistry</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-10-05</date><risdate>2020</risdate><volume>59</volume><issue>41</issue><spage>17810</spage><epage>17855</epage><pages>17810-17855</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>All matter has density. The recorded uses of density to characterize matter date back to as early as ca. 250 BC, when Archimedes was believed to have solved “The Puzzle of The King's Crown” using density.[1] Today, measurements of density are used to separate and characterize a range of materials (including cells and organisms), and their chemical and/or physical changes in time and space. This Review describes a density‐based technique—magnetic levitation (which we call “MagLev” for simplicity)—developed and used to solve problems in the fields of chemistry, materials science, and biochemistry. MagLev has two principal characteristics—simplicity, and applicability to a wide range of materials—that make it useful for a number of applications (for example, characterization of materials, quality control of manufactured plastic parts, self‐assembly of objects in 3D, separation of different types of biological cells, and bioanalyses). Its simplicity and breadth of applications also enable its use in low‐resource settings (for example—in economically developing regions—in evaluating water/food quality, and in diagnosing disease). A density‐based technique—magnetic levitation (MagLev)—developed and used to solve problems in the fields of chemistry, materials science, and biochemistry is described in this Review. MagLev has two principal characteristics: i) it is density‐based, and thus in principle applicable to all materials, and ii) it is simple—a characteristic that makes it useful for a number of applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31165560</pmid><doi>10.1002/anie.201903391</doi><tpages>46</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9345-2481</orcidid><orcidid>https://orcid.org/0000-0001-9580-6784</orcidid><orcidid>https://orcid.org/0000-0001-9451-2442</orcidid><orcidid>https://orcid.org/0000000293452481</orcidid><orcidid>https://orcid.org/0000000195806784</orcidid><orcidid>https://orcid.org/0000000194512442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2020-10, Vol.59 (41), p.17810-17855
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1734812
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biochemistry
Density
density-based measurement
Food quality
Magnetic levitation
magnetic properties
Magnetics
Materials Science
Quality control
Water quality
title Magnetic Levitation in Chemistry, Materials Science, and Biochemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Levitation%20in%20Chemistry,%20Materials%20Science,%20and%20Biochemistry&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Ge,%20Shencheng&rft.date=2020-10-05&rft.volume=59&rft.issue=41&rft.spage=17810&rft.epage=17855&rft.pages=17810-17855&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201903391&rft_dat=%3Cproquest_osti_%3E2340037431%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446718446&rft_id=info:pmid/31165560&rfr_iscdi=true