Rate Enhancement of Acid-Catalyzed Alcohol Dehydration by Supramolecular Organic Capsules

The presence of a (sub)­nanometric environment has been demonstrated to enhance the rate of homogeneous acid-catalyzed reactions. Conventionally, such catalysts are constructed by directly embedding a catalytically active acid site into the structure of a porous material, linking the acid properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-11, Vol.10 (22), p.13371-13376
Hauptverfasser: Zhang, Wei, Cheng, Guanhua, Haller, Gary L, Liu, Yue, Lercher, Johannes A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13376
container_issue 22
container_start_page 13371
container_title ACS catalysis
container_volume 10
creator Zhang, Wei
Cheng, Guanhua
Haller, Gary L
Liu, Yue
Lercher, Johannes A
description The presence of a (sub)­nanometric environment has been demonstrated to enhance the rate of homogeneous acid-catalyzed reactions. Conventionally, such catalysts are constructed by directly embedding a catalytically active acid site into the structure of a porous material, linking the acid properties with the properties of the embedding solid. In this work, a holoenzyme mimicking approach was used, in which a self-assembled hexameric resorcinarene capsule (1.4 nm3 cavity) acts like an apoenzyme that transforms into a catalytically active site by hosting hydrated HCl as a cofactor. This capsule binds the hydronium ion together with cyclohexanol (CyOH) and catalyzes the dehydration to cyclohexene with enhanced rates that are 2 orders of magnitude higher than those in the unconstrained environment. Kinetic analysis shows that cyclohexanol dehydration proceeds via an E2 mechanism on hydrated HCl in the unconstrained environment, while the constrained environment of the active capsule induces the stabilization of an ionic intermediate, allowing an E1 mechanism to dominate. By comparison with the reaction in zeolite environments, we show that the direct chemical environment of the capsule or a zeolite wall exerts only a minor direct influence. The volume constraint increases the reaction rate by inducing a larger activation entropy, indicating the stabilization of a later transition state in the E1 mechanism, as well as a higher reaction space of the carbenium ion constituting the transition state.
doi_str_mv 10.1021/acscatal.0c03625
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1734638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c091642613</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-8cc56a10ed11abd30602b997a586b01dfc6ece45cc89e38d44187f5e40508d763</originalsourceid><addsrcrecordid>eNp1kL1rwzAQxUVpoSHN3lF0rlPJsmx5DG76AYFAP4ZOQj6dawfHCpI9uH99HdJCl95yB_d7D94j5JqzJWcxvzMQwPSmXTJgIo3lGZnFXMpIJkKe_7kvySKEHZsmkanK2Ix8vJge6bqrTQe4x66nrqIraGxUHA3HL7R01YKrXUvvsR6tN33jOlqO9HU4eLN3LcLQGk-3_tN0DdDCHMLQYrgiF5VpAy5-9py8P6zfiqdos318LlabyIgk7yMFIFPDGVrOTWkFS1lc5nlmpEpLxm0FKQImEkDlKJRNEq6ySmLCJFM2S8Wc3Jx8XegbHaDpEWpwXYfQa56JJBVqgtgJAu9C8Fjpg2_2xo-aM32sUP9WqH8qnCS3J8n00Ts3-G5K8T_-DSQ2dTU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rate Enhancement of Acid-Catalyzed Alcohol Dehydration by Supramolecular Organic Capsules</title><source>ACS Publications</source><creator>Zhang, Wei ; Cheng, Guanhua ; Haller, Gary L ; Liu, Yue ; Lercher, Johannes A</creator><creatorcontrib>Zhang, Wei ; Cheng, Guanhua ; Haller, Gary L ; Liu, Yue ; Lercher, Johannes A ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The presence of a (sub)­nanometric environment has been demonstrated to enhance the rate of homogeneous acid-catalyzed reactions. Conventionally, such catalysts are constructed by directly embedding a catalytically active acid site into the structure of a porous material, linking the acid properties with the properties of the embedding solid. In this work, a holoenzyme mimicking approach was used, in which a self-assembled hexameric resorcinarene capsule (1.4 nm3 cavity) acts like an apoenzyme that transforms into a catalytically active site by hosting hydrated HCl as a cofactor. This capsule binds the hydronium ion together with cyclohexanol (CyOH) and catalyzes the dehydration to cyclohexene with enhanced rates that are 2 orders of magnitude higher than those in the unconstrained environment. Kinetic analysis shows that cyclohexanol dehydration proceeds via an E2 mechanism on hydrated HCl in the unconstrained environment, while the constrained environment of the active capsule induces the stabilization of an ionic intermediate, allowing an E1 mechanism to dominate. By comparison with the reaction in zeolite environments, we show that the direct chemical environment of the capsule or a zeolite wall exerts only a minor direct influence. The volume constraint increases the reaction rate by inducing a larger activation entropy, indicating the stabilization of a later transition state in the E1 mechanism, as well as a higher reaction space of the carbenium ion constituting the transition state.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.0c03625</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acid catalysis ; alcohol dehydration ; confinement ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; kinetics ; supramolecular capsule</subject><ispartof>ACS catalysis, 2020-11, Vol.10 (22), p.13371-13376</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-8cc56a10ed11abd30602b997a586b01dfc6ece45cc89e38d44187f5e40508d763</citedby><cites>FETCH-LOGICAL-a349t-8cc56a10ed11abd30602b997a586b01dfc6ece45cc89e38d44187f5e40508d763</cites><orcidid>0000-0001-8939-0233 ; 0000-0002-2495-1404 ; 0000-0001-8482-5488 ; 0000000184825488 ; 0000000224951404 ; 0000000189390233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.0c03625$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.0c03625$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1734638$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Cheng, Guanhua</creatorcontrib><creatorcontrib>Haller, Gary L</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Lercher, Johannes A</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Rate Enhancement of Acid-Catalyzed Alcohol Dehydration by Supramolecular Organic Capsules</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The presence of a (sub)­nanometric environment has been demonstrated to enhance the rate of homogeneous acid-catalyzed reactions. Conventionally, such catalysts are constructed by directly embedding a catalytically active acid site into the structure of a porous material, linking the acid properties with the properties of the embedding solid. In this work, a holoenzyme mimicking approach was used, in which a self-assembled hexameric resorcinarene capsule (1.4 nm3 cavity) acts like an apoenzyme that transforms into a catalytically active site by hosting hydrated HCl as a cofactor. This capsule binds the hydronium ion together with cyclohexanol (CyOH) and catalyzes the dehydration to cyclohexene with enhanced rates that are 2 orders of magnitude higher than those in the unconstrained environment. Kinetic analysis shows that cyclohexanol dehydration proceeds via an E2 mechanism on hydrated HCl in the unconstrained environment, while the constrained environment of the active capsule induces the stabilization of an ionic intermediate, allowing an E1 mechanism to dominate. By comparison with the reaction in zeolite environments, we show that the direct chemical environment of the capsule or a zeolite wall exerts only a minor direct influence. The volume constraint increases the reaction rate by inducing a larger activation entropy, indicating the stabilization of a later transition state in the E1 mechanism, as well as a higher reaction space of the carbenium ion constituting the transition state.</description><subject>acid catalysis</subject><subject>alcohol dehydration</subject><subject>confinement</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>kinetics</subject><subject>supramolecular capsule</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1rwzAQxUVpoSHN3lF0rlPJsmx5DG76AYFAP4ZOQj6dawfHCpI9uH99HdJCl95yB_d7D94j5JqzJWcxvzMQwPSmXTJgIo3lGZnFXMpIJkKe_7kvySKEHZsmkanK2Ix8vJge6bqrTQe4x66nrqIraGxUHA3HL7R01YKrXUvvsR6tN33jOlqO9HU4eLN3LcLQGk-3_tN0DdDCHMLQYrgiF5VpAy5-9py8P6zfiqdos318LlabyIgk7yMFIFPDGVrOTWkFS1lc5nlmpEpLxm0FKQImEkDlKJRNEq6ySmLCJFM2S8Wc3Jx8XegbHaDpEWpwXYfQa56JJBVqgtgJAu9C8Fjpg2_2xo-aM32sUP9WqH8qnCS3J8n00Ts3-G5K8T_-DSQ2dTU</recordid><startdate>20201120</startdate><enddate>20201120</enddate><creator>Zhang, Wei</creator><creator>Cheng, Guanhua</creator><creator>Haller, Gary L</creator><creator>Liu, Yue</creator><creator>Lercher, Johannes A</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8939-0233</orcidid><orcidid>https://orcid.org/0000-0002-2495-1404</orcidid><orcidid>https://orcid.org/0000-0001-8482-5488</orcidid><orcidid>https://orcid.org/0000000184825488</orcidid><orcidid>https://orcid.org/0000000224951404</orcidid><orcidid>https://orcid.org/0000000189390233</orcidid></search><sort><creationdate>20201120</creationdate><title>Rate Enhancement of Acid-Catalyzed Alcohol Dehydration by Supramolecular Organic Capsules</title><author>Zhang, Wei ; Cheng, Guanhua ; Haller, Gary L ; Liu, Yue ; Lercher, Johannes A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-8cc56a10ed11abd30602b997a586b01dfc6ece45cc89e38d44187f5e40508d763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acid catalysis</topic><topic>alcohol dehydration</topic><topic>confinement</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>kinetics</topic><topic>supramolecular capsule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Cheng, Guanhua</creatorcontrib><creatorcontrib>Haller, Gary L</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Lercher, Johannes A</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Cheng, Guanhua</au><au>Haller, Gary L</au><au>Liu, Yue</au><au>Lercher, Johannes A</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate Enhancement of Acid-Catalyzed Alcohol Dehydration by Supramolecular Organic Capsules</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-11-20</date><risdate>2020</risdate><volume>10</volume><issue>22</issue><spage>13371</spage><epage>13376</epage><pages>13371-13376</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The presence of a (sub)­nanometric environment has been demonstrated to enhance the rate of homogeneous acid-catalyzed reactions. Conventionally, such catalysts are constructed by directly embedding a catalytically active acid site into the structure of a porous material, linking the acid properties with the properties of the embedding solid. In this work, a holoenzyme mimicking approach was used, in which a self-assembled hexameric resorcinarene capsule (1.4 nm3 cavity) acts like an apoenzyme that transforms into a catalytically active site by hosting hydrated HCl as a cofactor. This capsule binds the hydronium ion together with cyclohexanol (CyOH) and catalyzes the dehydration to cyclohexene with enhanced rates that are 2 orders of magnitude higher than those in the unconstrained environment. Kinetic analysis shows that cyclohexanol dehydration proceeds via an E2 mechanism on hydrated HCl in the unconstrained environment, while the constrained environment of the active capsule induces the stabilization of an ionic intermediate, allowing an E1 mechanism to dominate. By comparison with the reaction in zeolite environments, we show that the direct chemical environment of the capsule or a zeolite wall exerts only a minor direct influence. The volume constraint increases the reaction rate by inducing a larger activation entropy, indicating the stabilization of a later transition state in the E1 mechanism, as well as a higher reaction space of the carbenium ion constituting the transition state.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.0c03625</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8939-0233</orcidid><orcidid>https://orcid.org/0000-0002-2495-1404</orcidid><orcidid>https://orcid.org/0000-0001-8482-5488</orcidid><orcidid>https://orcid.org/0000000184825488</orcidid><orcidid>https://orcid.org/0000000224951404</orcidid><orcidid>https://orcid.org/0000000189390233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-11, Vol.10 (22), p.13371-13376
issn 2155-5435
2155-5435
language eng
recordid cdi_osti_scitechconnect_1734638
source ACS Publications
subjects acid catalysis
alcohol dehydration
confinement
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
kinetics
supramolecular capsule
title Rate Enhancement of Acid-Catalyzed Alcohol Dehydration by Supramolecular Organic Capsules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20Enhancement%20of%20Acid-Catalyzed%20Alcohol%20Dehydration%20by%20Supramolecular%20Organic%20Capsules&rft.jtitle=ACS%20catalysis&rft.au=Zhang,%20Wei&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-11-20&rft.volume=10&rft.issue=22&rft.spage=13371&rft.epage=13376&rft.pages=13371-13376&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.0c03625&rft_dat=%3Cacs_osti_%3Ec091642613%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true