Instability and treatments of the coupled discrete element and lattice Boltzmann method by the immersed moving boundary scheme
Summary The immersed moving boundary (IMB) scheme has been extensively used to couple the discrete element method (DEM) with the lattice Boltzmann method (LBM). In the literature, only the formulation of IMB for lattice nodal cells covered by a single‐solid particle was given. The treatment of situa...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2020-11, Vol.121 (21), p.4901-4919 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4919 |
---|---|
container_issue | 21 |
container_start_page | 4901 |
container_title | International journal for numerical methods in engineering |
container_volume | 121 |
creator | Wang, Min Feng, Y.T. Qu, T.M. Tao, Shi Zhao, T.T. |
description | Summary
The immersed moving boundary (IMB) scheme has been extensively used to couple the discrete element method (DEM) with the lattice Boltzmann method (LBM). In the literature, only the formulation of IMB for lattice nodal cells covered by a single‐solid particle was given. The treatment of situations where a nodal cell is covered by two or more solid particles is seldom discussed. It is found that some numerical instability can occur for such situations due to an inappropriate computation of the weighting function in the IMB formulation. This work presents an enhanced treatment that can resolve the issue and validates it using some benchmark tests. Furthermore, to avoid the extra costs associated with the treatment and simplify the complicated procedure introduced, a simplified IMB scheme is proposed. The accuracy of both enhanced and simplified IMB schemes are validated by test cases including single‐particle sedimentation, two‐particle drafting‐kissing‐tumbling phenomenon, and multiple‐particle sedimentation. Then, the robustness of both schemes is examined and discussed using a specially designed flow past cylinders test. The simplified IMB scheme is proved to be robust and sufficiently accurate and simpler and more effective than the enhanced scheme. |
doi_str_mv | 10.1002/nme.6499 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1726200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447734808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-1a26efe02136a6925609759a7d502e4454669a3e8e428823bceae2a445000da3</originalsourceid><addsrcrecordid>eNp10TtPAzEMB_AIgUQpSHyECBaWAyeXe2QEVB4Sj4U9SnMuTXWXlCQFlYHPTtqyMnnwz5atPyGnDC4ZAL9yA17WQso9MmIgmwI4NPtklFuyqGTLDslRjAsAxiooR-Tn0cWkp7a3aU2162gKqNOALkXqZzTNkRq_WvbY0c5GEzAhxR43YMt7nZI1SG98n74H7RwdMM19R6fr7bAdBgwxTw_-07p3OvUr1-mwptHM85ZjcjDTfcSTvzomb3eTt9uH4un1_vH2-qkwZSVkwTSvcYbAWVnrWvKqzq9VUjddBRyFqERdS11ii4K3LS-nBjVynRsA0OlyTM52a31MVkVjE5q58c6hSYo1vOYAGZ3v0DL4jxXGpBZ-FVw-S3EhmqYULbRZXeyUCT7GgDO1DHbIHykGapOAygmoTQKZFjv6ZXtc_-vUy_Nk638B0_uH4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447734808</pqid></control><display><type>article</type><title>Instability and treatments of the coupled discrete element and lattice Boltzmann method by the immersed moving boundary scheme</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Min ; Feng, Y.T. ; Qu, T.M. ; Tao, Shi ; Zhao, T.T.</creator><creatorcontrib>Wang, Min ; Feng, Y.T. ; Qu, T.M. ; Tao, Shi ; Zhao, T.T. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Summary
The immersed moving boundary (IMB) scheme has been extensively used to couple the discrete element method (DEM) with the lattice Boltzmann method (LBM). In the literature, only the formulation of IMB for lattice nodal cells covered by a single‐solid particle was given. The treatment of situations where a nodal cell is covered by two or more solid particles is seldom discussed. It is found that some numerical instability can occur for such situations due to an inappropriate computation of the weighting function in the IMB formulation. This work presents an enhanced treatment that can resolve the issue and validates it using some benchmark tests. Furthermore, to avoid the extra costs associated with the treatment and simplify the complicated procedure introduced, a simplified IMB scheme is proposed. The accuracy of both enhanced and simplified IMB schemes are validated by test cases including single‐particle sedimentation, two‐particle drafting‐kissing‐tumbling phenomenon, and multiple‐particle sedimentation. Then, the robustness of both schemes is examined and discussed using a specially designed flow past cylinders test. The simplified IMB scheme is proved to be robust and sufficiently accurate and simpler and more effective than the enhanced scheme.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6499</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Computational fluid dynamics ; Discrete element method ; ENGINEERING ; fluid-particle interaction ; immersed moving boundary ; lattice Boltzmann method ; multiphase flow ; Robustness (mathematics) ; Sedimentation ; Sedimentation & deposition ; Tumbling ; Weighting functions</subject><ispartof>International journal for numerical methods in engineering, 2020-11, Vol.121 (21), p.4901-4919</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3549-1a26efe02136a6925609759a7d502e4454669a3e8e428823bceae2a445000da3</citedby><cites>FETCH-LOGICAL-c3549-1a26efe02136a6925609759a7d502e4454669a3e8e428823bceae2a445000da3</cites><orcidid>0000-0002-4454-2480 ; 0000000244542480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6499$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6499$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1726200$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Feng, Y.T.</creatorcontrib><creatorcontrib>Qu, T.M.</creatorcontrib><creatorcontrib>Tao, Shi</creatorcontrib><creatorcontrib>Zhao, T.T.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Instability and treatments of the coupled discrete element and lattice Boltzmann method by the immersed moving boundary scheme</title><title>International journal for numerical methods in engineering</title><description>Summary
The immersed moving boundary (IMB) scheme has been extensively used to couple the discrete element method (DEM) with the lattice Boltzmann method (LBM). In the literature, only the formulation of IMB for lattice nodal cells covered by a single‐solid particle was given. The treatment of situations where a nodal cell is covered by two or more solid particles is seldom discussed. It is found that some numerical instability can occur for such situations due to an inappropriate computation of the weighting function in the IMB formulation. This work presents an enhanced treatment that can resolve the issue and validates it using some benchmark tests. Furthermore, to avoid the extra costs associated with the treatment and simplify the complicated procedure introduced, a simplified IMB scheme is proposed. The accuracy of both enhanced and simplified IMB schemes are validated by test cases including single‐particle sedimentation, two‐particle drafting‐kissing‐tumbling phenomenon, and multiple‐particle sedimentation. Then, the robustness of both schemes is examined and discussed using a specially designed flow past cylinders test. The simplified IMB scheme is proved to be robust and sufficiently accurate and simpler and more effective than the enhanced scheme.</description><subject>Computational fluid dynamics</subject><subject>Discrete element method</subject><subject>ENGINEERING</subject><subject>fluid-particle interaction</subject><subject>immersed moving boundary</subject><subject>lattice Boltzmann method</subject><subject>multiphase flow</subject><subject>Robustness (mathematics)</subject><subject>Sedimentation</subject><subject>Sedimentation & deposition</subject><subject>Tumbling</subject><subject>Weighting functions</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10TtPAzEMB_AIgUQpSHyECBaWAyeXe2QEVB4Sj4U9SnMuTXWXlCQFlYHPTtqyMnnwz5atPyGnDC4ZAL9yA17WQso9MmIgmwI4NPtklFuyqGTLDslRjAsAxiooR-Tn0cWkp7a3aU2162gKqNOALkXqZzTNkRq_WvbY0c5GEzAhxR43YMt7nZI1SG98n74H7RwdMM19R6fr7bAdBgwxTw_-07p3OvUr1-mwptHM85ZjcjDTfcSTvzomb3eTt9uH4un1_vH2-qkwZSVkwTSvcYbAWVnrWvKqzq9VUjddBRyFqERdS11ii4K3LS-nBjVynRsA0OlyTM52a31MVkVjE5q58c6hSYo1vOYAGZ3v0DL4jxXGpBZ-FVw-S3EhmqYULbRZXeyUCT7GgDO1DHbIHykGapOAygmoTQKZFjv6ZXtc_-vUy_Nk638B0_uH4g</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Wang, Min</creator><creator>Feng, Y.T.</creator><creator>Qu, T.M.</creator><creator>Tao, Shi</creator><creator>Zhao, T.T.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4454-2480</orcidid><orcidid>https://orcid.org/0000000244542480</orcidid></search><sort><creationdate>20201115</creationdate><title>Instability and treatments of the coupled discrete element and lattice Boltzmann method by the immersed moving boundary scheme</title><author>Wang, Min ; Feng, Y.T. ; Qu, T.M. ; Tao, Shi ; Zhao, T.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-1a26efe02136a6925609759a7d502e4454669a3e8e428823bceae2a445000da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Discrete element method</topic><topic>ENGINEERING</topic><topic>fluid-particle interaction</topic><topic>immersed moving boundary</topic><topic>lattice Boltzmann method</topic><topic>multiphase flow</topic><topic>Robustness (mathematics)</topic><topic>Sedimentation</topic><topic>Sedimentation & deposition</topic><topic>Tumbling</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Feng, Y.T.</creatorcontrib><creatorcontrib>Qu, T.M.</creatorcontrib><creatorcontrib>Tao, Shi</creatorcontrib><creatorcontrib>Zhao, T.T.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Min</au><au>Feng, Y.T.</au><au>Qu, T.M.</au><au>Tao, Shi</au><au>Zhao, T.T.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability and treatments of the coupled discrete element and lattice Boltzmann method by the immersed moving boundary scheme</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-11-15</date><risdate>2020</risdate><volume>121</volume><issue>21</issue><spage>4901</spage><epage>4919</epage><pages>4901-4919</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
The immersed moving boundary (IMB) scheme has been extensively used to couple the discrete element method (DEM) with the lattice Boltzmann method (LBM). In the literature, only the formulation of IMB for lattice nodal cells covered by a single‐solid particle was given. The treatment of situations where a nodal cell is covered by two or more solid particles is seldom discussed. It is found that some numerical instability can occur for such situations due to an inappropriate computation of the weighting function in the IMB formulation. This work presents an enhanced treatment that can resolve the issue and validates it using some benchmark tests. Furthermore, to avoid the extra costs associated with the treatment and simplify the complicated procedure introduced, a simplified IMB scheme is proposed. The accuracy of both enhanced and simplified IMB schemes are validated by test cases including single‐particle sedimentation, two‐particle drafting‐kissing‐tumbling phenomenon, and multiple‐particle sedimentation. Then, the robustness of both schemes is examined and discussed using a specially designed flow past cylinders test. The simplified IMB scheme is proved to be robust and sufficiently accurate and simpler and more effective than the enhanced scheme.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6499</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4454-2480</orcidid><orcidid>https://orcid.org/0000000244542480</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2020-11, Vol.121 (21), p.4901-4919 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_osti_scitechconnect_1726200 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computational fluid dynamics Discrete element method ENGINEERING fluid-particle interaction immersed moving boundary lattice Boltzmann method multiphase flow Robustness (mathematics) Sedimentation Sedimentation & deposition Tumbling Weighting functions |
title | Instability and treatments of the coupled discrete element and lattice Boltzmann method by the immersed moving boundary scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20and%20treatments%20of%20the%20coupled%20discrete%20element%20and%20lattice%20Boltzmann%20method%20by%20the%20immersed%20moving%20boundary%20scheme&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Wang,%20Min&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-11-15&rft.volume=121&rft.issue=21&rft.spage=4901&rft.epage=4919&rft.pages=4901-4919&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6499&rft_dat=%3Cproquest_osti_%3E2447734808%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447734808&rft_id=info:pmid/&rfr_iscdi=true |