Experimental, numerical and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy region effects

•New findings on the mushy zone parameter in the enthalpy-porosity method.•Explanations on numerical sinking phenomenon by the enthalpy-porosity method.•An analytic solution that has good match with experiments is developed. The enthalpy-porosity method is widely used in solving solid-liquid phase c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2018-09, Vol.124 (C), p.1015-1024
Hauptverfasser: Pan, Chunjian, Charles, Joshua, Vermaak, Natasha, Romero, Carlos, Neti, Sudhakar, Zheng, Ying, Chen, Chien-Hua, Bonner, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1024
container_issue C
container_start_page 1015
container_title International journal of heat and mass transfer
container_volume 124
creator Pan, Chunjian
Charles, Joshua
Vermaak, Natasha
Romero, Carlos
Neti, Sudhakar
Zheng, Ying
Chen, Chien-Hua
Bonner, Richard
description •New findings on the mushy zone parameter in the enthalpy-porosity method.•Explanations on numerical sinking phenomenon by the enthalpy-porosity method.•An analytic solution that has good match with experiments is developed. The enthalpy-porosity method is widely used in solving solid-liquid phase change problems that involve convection in the melt; however the influence of the required mushy zone parameter on the melting process has been largely overlooked. In this paper, further investigation of the mushy zone parameter is presented. The enthalpy-porosity method is the default model in Fluent for melting simulations. A comprehensive discussion of previously reported mushy zone parameter values is presented with a comparison to numerical and experimental results. In this paper, based on experimental validations of melting times, it is found that mushy zone parameters can be optimized based on relevant driving temperature differences. And despite the fact that the model cannot capture bulk solid sinking behaviors, numerical solid sinking behaviors by Fluent are still widely reported in the literature. Explanations and supporting numerical analysis are given for this seeming contradiction. Finally, an analytic solution for unconstrained sinking is developed. With the introduction of a tuning parameter to modify the viscosity of the mushy region in the bottom liquid layer, good agreement between the analytical model and experimental results is achieved. A linear correlation for the tuning parameter based on driving temperature differences is given.
doi_str_mv 10.1016/j.ijheatmasstransfer.2018.04.009
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1724433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001793101830807X</els_id><sourcerecordid>2110079701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-574859a5d1a3170e70a6f969c072b09ac76518f09f1afe3a0b93cc7c40ee45633</originalsourceid><addsrcrecordid>eNqNUcFu1TAQtBBIPAr_YMGFAwnrxInjG6gqtKgSFzhbrrPuc5TYD9spzYlfx-Fx48JhZY12djy7Q8hbBjUD1r-fajcdUedFp5Sj9slirBtgQw28BpBPyIENQlYNG-RTcgBgopItg-fkRUrTDoH3B_Lr6vGE0S3os57fUb8uBRk9U-3HUnresjM05XXcaLB09Sb4_T_ncaQLztn5e-o81fQBY_4zabbZ-REj_enysTRsMGuiwdNlTceNRrx3BaC1aHJ6SZ5ZPSd89fe9IN8_XX27vK5uv36-ufx4WxnedbnqBB86qbuR6bY4RwG6t7KXBkRzB1Ib0XdssCAt0xZbDXeyNUYYDoi869v2grw-64aUnUrGZTTHsosvJhQTDeftTnpzJp1i-LFiymoKayxHSKphDEBIAaywPpxZJoaUIlp1KgfUcVMM1J6NmtS_2ag9GwVclWyKxJezBJaVH1zpFkfoDY4u7obG4P5f7DeIVaY1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110079701</pqid></control><display><type>article</type><title>Experimental, numerical and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy region effects</title><source>Access via ScienceDirect (Elsevier)</source><creator>Pan, Chunjian ; Charles, Joshua ; Vermaak, Natasha ; Romero, Carlos ; Neti, Sudhakar ; Zheng, Ying ; Chen, Chien-Hua ; Bonner, Richard</creator><creatorcontrib>Pan, Chunjian ; Charles, Joshua ; Vermaak, Natasha ; Romero, Carlos ; Neti, Sudhakar ; Zheng, Ying ; Chen, Chien-Hua ; Bonner, Richard</creatorcontrib><description>•New findings on the mushy zone parameter in the enthalpy-porosity method.•Explanations on numerical sinking phenomenon by the enthalpy-porosity method.•An analytic solution that has good match with experiments is developed. The enthalpy-porosity method is widely used in solving solid-liquid phase change problems that involve convection in the melt; however the influence of the required mushy zone parameter on the melting process has been largely overlooked. In this paper, further investigation of the mushy zone parameter is presented. The enthalpy-porosity method is the default model in Fluent for melting simulations. A comprehensive discussion of previously reported mushy zone parameter values is presented with a comparison to numerical and experimental results. In this paper, based on experimental validations of melting times, it is found that mushy zone parameters can be optimized based on relevant driving temperature differences. And despite the fact that the model cannot capture bulk solid sinking behaviors, numerical solid sinking behaviors by Fluent are still widely reported in the literature. Explanations and supporting numerical analysis are given for this seeming contradiction. Finally, an analytic solution for unconstrained sinking is developed. With the introduction of a tuning parameter to modify the viscosity of the mushy region in the bottom liquid layer, good agreement between the analytical model and experimental results is achieved. A linear correlation for the tuning parameter based on driving temperature differences is given.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2018.04.009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Convection ; Enthalpy ; Enthalpy-porosity method ; Liquid phases ; Mathematical models ; Melting ; Mushy zone constant ; Mushy zones ; Numerical analysis ; Parameter modification ; Phase transitions ; Porosity ; Process parameters ; Simulation ; Temperature gradients ; Thermodynamics ; Tuning ; Unconstrained melting ; Vertical cylinders ; Viscosity</subject><ispartof>International journal of heat and mass transfer, 2018-09, Vol.124 (C), p.1015-1024</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-574859a5d1a3170e70a6f969c072b09ac76518f09f1afe3a0b93cc7c40ee45633</citedby><cites>FETCH-LOGICAL-c455t-574859a5d1a3170e70a6f969c072b09ac76518f09f1afe3a0b93cc7c40ee45633</cites><orcidid>0000-0002-2157-536X ; 000000022157536X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1724433$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Chunjian</creatorcontrib><creatorcontrib>Charles, Joshua</creatorcontrib><creatorcontrib>Vermaak, Natasha</creatorcontrib><creatorcontrib>Romero, Carlos</creatorcontrib><creatorcontrib>Neti, Sudhakar</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><creatorcontrib>Chen, Chien-Hua</creatorcontrib><creatorcontrib>Bonner, Richard</creatorcontrib><title>Experimental, numerical and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy region effects</title><title>International journal of heat and mass transfer</title><description>•New findings on the mushy zone parameter in the enthalpy-porosity method.•Explanations on numerical sinking phenomenon by the enthalpy-porosity method.•An analytic solution that has good match with experiments is developed. The enthalpy-porosity method is widely used in solving solid-liquid phase change problems that involve convection in the melt; however the influence of the required mushy zone parameter on the melting process has been largely overlooked. In this paper, further investigation of the mushy zone parameter is presented. The enthalpy-porosity method is the default model in Fluent for melting simulations. A comprehensive discussion of previously reported mushy zone parameter values is presented with a comparison to numerical and experimental results. In this paper, based on experimental validations of melting times, it is found that mushy zone parameters can be optimized based on relevant driving temperature differences. And despite the fact that the model cannot capture bulk solid sinking behaviors, numerical solid sinking behaviors by Fluent are still widely reported in the literature. Explanations and supporting numerical analysis are given for this seeming contradiction. Finally, an analytic solution for unconstrained sinking is developed. With the introduction of a tuning parameter to modify the viscosity of the mushy region in the bottom liquid layer, good agreement between the analytical model and experimental results is achieved. A linear correlation for the tuning parameter based on driving temperature differences is given.</description><subject>Computer simulation</subject><subject>Convection</subject><subject>Enthalpy</subject><subject>Enthalpy-porosity method</subject><subject>Liquid phases</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Mushy zone constant</subject><subject>Mushy zones</subject><subject>Numerical analysis</subject><subject>Parameter modification</subject><subject>Phase transitions</subject><subject>Porosity</subject><subject>Process parameters</subject><subject>Simulation</subject><subject>Temperature gradients</subject><subject>Thermodynamics</subject><subject>Tuning</subject><subject>Unconstrained melting</subject><subject>Vertical cylinders</subject><subject>Viscosity</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNUcFu1TAQtBBIPAr_YMGFAwnrxInjG6gqtKgSFzhbrrPuc5TYD9spzYlfx-Fx48JhZY12djy7Q8hbBjUD1r-fajcdUedFp5Sj9slirBtgQw28BpBPyIENQlYNG-RTcgBgopItg-fkRUrTDoH3B_Lr6vGE0S3os57fUb8uBRk9U-3HUnresjM05XXcaLB09Sb4_T_ncaQLztn5e-o81fQBY_4zabbZ-REj_enysTRsMGuiwdNlTceNRrx3BaC1aHJ6SZ5ZPSd89fe9IN8_XX27vK5uv36-ufx4WxnedbnqBB86qbuR6bY4RwG6t7KXBkRzB1Ib0XdssCAt0xZbDXeyNUYYDoi869v2grw-64aUnUrGZTTHsosvJhQTDeftTnpzJp1i-LFiymoKayxHSKphDEBIAaywPpxZJoaUIlp1KgfUcVMM1J6NmtS_2ag9GwVclWyKxJezBJaVH1zpFkfoDY4u7obG4P5f7DeIVaY1</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Pan, Chunjian</creator><creator>Charles, Joshua</creator><creator>Vermaak, Natasha</creator><creator>Romero, Carlos</creator><creator>Neti, Sudhakar</creator><creator>Zheng, Ying</creator><creator>Chen, Chien-Hua</creator><creator>Bonner, Richard</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2157-536X</orcidid><orcidid>https://orcid.org/000000022157536X</orcidid></search><sort><creationdate>201809</creationdate><title>Experimental, numerical and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy region effects</title><author>Pan, Chunjian ; Charles, Joshua ; Vermaak, Natasha ; Romero, Carlos ; Neti, Sudhakar ; Zheng, Ying ; Chen, Chien-Hua ; Bonner, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-574859a5d1a3170e70a6f969c072b09ac76518f09f1afe3a0b93cc7c40ee45633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Convection</topic><topic>Enthalpy</topic><topic>Enthalpy-porosity method</topic><topic>Liquid phases</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Mushy zone constant</topic><topic>Mushy zones</topic><topic>Numerical analysis</topic><topic>Parameter modification</topic><topic>Phase transitions</topic><topic>Porosity</topic><topic>Process parameters</topic><topic>Simulation</topic><topic>Temperature gradients</topic><topic>Thermodynamics</topic><topic>Tuning</topic><topic>Unconstrained melting</topic><topic>Vertical cylinders</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Chunjian</creatorcontrib><creatorcontrib>Charles, Joshua</creatorcontrib><creatorcontrib>Vermaak, Natasha</creatorcontrib><creatorcontrib>Romero, Carlos</creatorcontrib><creatorcontrib>Neti, Sudhakar</creatorcontrib><creatorcontrib>Zheng, Ying</creatorcontrib><creatorcontrib>Chen, Chien-Hua</creatorcontrib><creatorcontrib>Bonner, Richard</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Chunjian</au><au>Charles, Joshua</au><au>Vermaak, Natasha</au><au>Romero, Carlos</au><au>Neti, Sudhakar</au><au>Zheng, Ying</au><au>Chen, Chien-Hua</au><au>Bonner, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental, numerical and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy region effects</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2018-09</date><risdate>2018</risdate><volume>124</volume><issue>C</issue><spage>1015</spage><epage>1024</epage><pages>1015-1024</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•New findings on the mushy zone parameter in the enthalpy-porosity method.•Explanations on numerical sinking phenomenon by the enthalpy-porosity method.•An analytic solution that has good match with experiments is developed. The enthalpy-porosity method is widely used in solving solid-liquid phase change problems that involve convection in the melt; however the influence of the required mushy zone parameter on the melting process has been largely overlooked. In this paper, further investigation of the mushy zone parameter is presented. The enthalpy-porosity method is the default model in Fluent for melting simulations. A comprehensive discussion of previously reported mushy zone parameter values is presented with a comparison to numerical and experimental results. In this paper, based on experimental validations of melting times, it is found that mushy zone parameters can be optimized based on relevant driving temperature differences. And despite the fact that the model cannot capture bulk solid sinking behaviors, numerical solid sinking behaviors by Fluent are still widely reported in the literature. Explanations and supporting numerical analysis are given for this seeming contradiction. Finally, an analytic solution for unconstrained sinking is developed. With the introduction of a tuning parameter to modify the viscosity of the mushy region in the bottom liquid layer, good agreement between the analytical model and experimental results is achieved. A linear correlation for the tuning parameter based on driving temperature differences is given.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2018.04.009</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2157-536X</orcidid><orcidid>https://orcid.org/000000022157536X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2018-09, Vol.124 (C), p.1015-1024
issn 0017-9310
1879-2189
language eng
recordid cdi_osti_scitechconnect_1724433
source Access via ScienceDirect (Elsevier)
subjects Computer simulation
Convection
Enthalpy
Enthalpy-porosity method
Liquid phases
Mathematical models
Melting
Mushy zone constant
Mushy zones
Numerical analysis
Parameter modification
Phase transitions
Porosity
Process parameters
Simulation
Temperature gradients
Thermodynamics
Tuning
Unconstrained melting
Vertical cylinders
Viscosity
title Experimental, numerical and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy region effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental,%20numerical%20and%20analytic%20study%20of%20unconstrained%20melting%20in%20a%20vertical%20cylinder%20with%20a%20focus%20on%20mushy%20region%20effects&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Pan,%20Chunjian&rft.date=2018-09&rft.volume=124&rft.issue=C&rft.spage=1015&rft.epage=1024&rft.pages=1015-1024&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2018.04.009&rft_dat=%3Cproquest_osti_%3E2110079701%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110079701&rft_id=info:pmid/&rft_els_id=S001793101830807X&rfr_iscdi=true