Science-based MEMS reliability methodology
In cases where device numbers are limited, large statistical studies to verify reliability are impractical. Instead, an approach incorporating a solid base of modelling, simulation, and material science into a standard reliability methodology makes more sense and leads to a science-based reliability...
Gespeichert in:
Veröffentlicht in: | Microelectronics and reliability 2007-09, Vol.47 (9), p.1806-1811 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1811 |
---|---|
container_issue | 9 |
container_start_page | 1806 |
container_title | Microelectronics and reliability |
container_volume | 47 |
creator | Tanner, D.M. Parson, T.B. Corwin, A.D. Walraven, J.A. Wittwer, J.W. Boyce, B.L. Winzer, S.R. |
description | In cases where device numbers are limited, large statistical studies to verify reliability are impractical. Instead, an approach incorporating a solid base of modelling, simulation, and material science into a standard reliability methodology makes more sense and leads to a science-based reliability methodology. The basic reliability method is (a) design, model and fabricate, (b) test structures and devices, (c) identify failure modes and mechanisms, (d) develop predictive reliability models (accelerated aging), and (e) develop qualification methods. At various points in these steps technical data is required on MEMS material properties (residual stress, fracture strength, fatigue, etc.), MEMS surface characterization (stiction, friction, adhesion, role of coatings, etc.) or MEMS modelling and simulation (finite element, analysis, uncertainty analysis, etc.). This methodology is discussed as it relates to reliability testing of a micro-mirror array consisting of 144-piston mirrors. In this case, 140 mirrors were cycled full stroke (1.5
μm) 26 billion times with no failure. Using our technical science base, fatigue of the springs was eliminated as a mechanism of concern. Eliminating this wear-out mechanism allowed use of the exponential statistical model to predict lower bound confidence levels for failure rate in a “no-fail” condition. |
doi_str_mv | 10.1016/j.microrel.2007.07.061 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1716627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271407003320</els_id><sourcerecordid>S0026271407003320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-3119a68db399374bd23fdb3fae7104917965983ec6fe5d31bcd4e442691729a83</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QYrgRdg1k6TJ5qZI_YAWD1XwFrJJ1qZsd0uyCP33JqziURgYhnne-XgRugRcAgZ-uy133oQ-uLYkGIsyB4cjNIFKkEIy-DhGE4wJL4gAdorOYtziBGKACbpZG-8644paR2dnq8VqPUuTvK5964fDbOeGTW_7tv88nKOTRrfRXfzkKXp_XLw9PBfL16eXh_tlYRiIoaAAUvPK1lRKKlhtCW1S0WgnADMJQvK5rKgzvHFzS6E2ljnGCE8tInVFp-hqnNvHwato_ODMxvRd58ygQADnRCSIj1D6PMbgGrUPfqfDQQFW2Ra1Vb-2qGyLysEhCa9H4V5Ho9sm6M74-KeWjFaCzRN3N3IuvfrlXciXZKesD_kQ2_v_Vn0DZZx6RQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Science-based MEMS reliability methodology</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tanner, D.M. ; Parson, T.B. ; Corwin, A.D. ; Walraven, J.A. ; Wittwer, J.W. ; Boyce, B.L. ; Winzer, S.R.</creator><creatorcontrib>Tanner, D.M. ; Parson, T.B. ; Corwin, A.D. ; Walraven, J.A. ; Wittwer, J.W. ; Boyce, B.L. ; Winzer, S.R. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>In cases where device numbers are limited, large statistical studies to verify reliability are impractical. Instead, an approach incorporating a solid base of modelling, simulation, and material science into a standard reliability methodology makes more sense and leads to a science-based reliability methodology. The basic reliability method is (a) design, model and fabricate, (b) test structures and devices, (c) identify failure modes and mechanisms, (d) develop predictive reliability models (accelerated aging), and (e) develop qualification methods. At various points in these steps technical data is required on MEMS material properties (residual stress, fracture strength, fatigue, etc.), MEMS surface characterization (stiction, friction, adhesion, role of coatings, etc.) or MEMS modelling and simulation (finite element, analysis, uncertainty analysis, etc.). This methodology is discussed as it relates to reliability testing of a micro-mirror array consisting of 144-piston mirrors. In this case, 140 mirrors were cycled full stroke (1.5
μm) 26 billion times with no failure. Using our technical science base, fatigue of the springs was eliminated as a mechanism of concern. Eliminating this wear-out mechanism allowed use of the exponential statistical model to predict lower bound confidence levels for failure rate in a “no-fail” condition.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2007.07.061</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Materials ; Micro- and nanoelectromechanical devices (mems/nems) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Testing, measurement, noise and reliability</subject><ispartof>Microelectronics and reliability, 2007-09, Vol.47 (9), p.1806-1811</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-3119a68db399374bd23fdb3fae7104917965983ec6fe5d31bcd4e442691729a83</citedby><cites>FETCH-LOGICAL-c417t-3119a68db399374bd23fdb3fae7104917965983ec6fe5d31bcd4e442691729a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.microrel.2007.07.061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,310,311,315,781,785,790,791,886,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19438745$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1716627$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanner, D.M.</creatorcontrib><creatorcontrib>Parson, T.B.</creatorcontrib><creatorcontrib>Corwin, A.D.</creatorcontrib><creatorcontrib>Walraven, J.A.</creatorcontrib><creatorcontrib>Wittwer, J.W.</creatorcontrib><creatorcontrib>Boyce, B.L.</creatorcontrib><creatorcontrib>Winzer, S.R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Science-based MEMS reliability methodology</title><title>Microelectronics and reliability</title><description>In cases where device numbers are limited, large statistical studies to verify reliability are impractical. Instead, an approach incorporating a solid base of modelling, simulation, and material science into a standard reliability methodology makes more sense and leads to a science-based reliability methodology. The basic reliability method is (a) design, model and fabricate, (b) test structures and devices, (c) identify failure modes and mechanisms, (d) develop predictive reliability models (accelerated aging), and (e) develop qualification methods. At various points in these steps technical data is required on MEMS material properties (residual stress, fracture strength, fatigue, etc.), MEMS surface characterization (stiction, friction, adhesion, role of coatings, etc.) or MEMS modelling and simulation (finite element, analysis, uncertainty analysis, etc.). This methodology is discussed as it relates to reliability testing of a micro-mirror array consisting of 144-piston mirrors. In this case, 140 mirrors were cycled full stroke (1.5
μm) 26 billion times with no failure. Using our technical science base, fatigue of the springs was eliminated as a mechanism of concern. Eliminating this wear-out mechanism allowed use of the exponential statistical model to predict lower bound confidence levels for failure rate in a “no-fail” condition.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Materials</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Testing, measurement, noise and reliability</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QYrgRdg1k6TJ5qZI_YAWD1XwFrJJ1qZsd0uyCP33JqziURgYhnne-XgRugRcAgZ-uy133oQ-uLYkGIsyB4cjNIFKkEIy-DhGE4wJL4gAdorOYtziBGKACbpZG-8644paR2dnq8VqPUuTvK5964fDbOeGTW_7tv88nKOTRrfRXfzkKXp_XLw9PBfL16eXh_tlYRiIoaAAUvPK1lRKKlhtCW1S0WgnADMJQvK5rKgzvHFzS6E2ljnGCE8tInVFp-hqnNvHwato_ODMxvRd58ygQADnRCSIj1D6PMbgGrUPfqfDQQFW2Ra1Vb-2qGyLysEhCa9H4V5Ho9sm6M74-KeWjFaCzRN3N3IuvfrlXciXZKesD_kQ2_v_Vn0DZZx6RQ</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Tanner, D.M.</creator><creator>Parson, T.B.</creator><creator>Corwin, A.D.</creator><creator>Walraven, J.A.</creator><creator>Wittwer, J.W.</creator><creator>Boyce, B.L.</creator><creator>Winzer, S.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20070901</creationdate><title>Science-based MEMS reliability methodology</title><author>Tanner, D.M. ; Parson, T.B. ; Corwin, A.D. ; Walraven, J.A. ; Wittwer, J.W. ; Boyce, B.L. ; Winzer, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-3119a68db399374bd23fdb3fae7104917965983ec6fe5d31bcd4e442691729a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Materials</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanner, D.M.</creatorcontrib><creatorcontrib>Parson, T.B.</creatorcontrib><creatorcontrib>Corwin, A.D.</creatorcontrib><creatorcontrib>Walraven, J.A.</creatorcontrib><creatorcontrib>Wittwer, J.W.</creatorcontrib><creatorcontrib>Boyce, B.L.</creatorcontrib><creatorcontrib>Winzer, S.R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanner, D.M.</au><au>Parson, T.B.</au><au>Corwin, A.D.</au><au>Walraven, J.A.</au><au>Wittwer, J.W.</au><au>Boyce, B.L.</au><au>Winzer, S.R.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Science-based MEMS reliability methodology</atitle><jtitle>Microelectronics and reliability</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>47</volume><issue>9</issue><spage>1806</spage><epage>1811</epage><pages>1806-1811</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>In cases where device numbers are limited, large statistical studies to verify reliability are impractical. Instead, an approach incorporating a solid base of modelling, simulation, and material science into a standard reliability methodology makes more sense and leads to a science-based reliability methodology. The basic reliability method is (a) design, model and fabricate, (b) test structures and devices, (c) identify failure modes and mechanisms, (d) develop predictive reliability models (accelerated aging), and (e) develop qualification methods. At various points in these steps technical data is required on MEMS material properties (residual stress, fracture strength, fatigue, etc.), MEMS surface characterization (stiction, friction, adhesion, role of coatings, etc.) or MEMS modelling and simulation (finite element, analysis, uncertainty analysis, etc.). This methodology is discussed as it relates to reliability testing of a micro-mirror array consisting of 144-piston mirrors. In this case, 140 mirrors were cycled full stroke (1.5
μm) 26 billion times with no failure. Using our technical science base, fatigue of the springs was eliminated as a mechanism of concern. Eliminating this wear-out mechanism allowed use of the exponential statistical model to predict lower bound confidence levels for failure rate in a “no-fail” condition.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2007.07.061</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-2714 |
ispartof | Microelectronics and reliability, 2007-09, Vol.47 (9), p.1806-1811 |
issn | 0026-2714 1872-941X |
language | eng |
recordid | cdi_osti_scitechconnect_1716627 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Electronics Exact sciences and technology Materials Micro- and nanoelectromechanical devices (mems/nems) Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Testing, measurement, noise and reliability |
title | Science-based MEMS reliability methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Science-based%20MEMS%20reliability%20methodology&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Tanner,%20D.M.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2007-09-01&rft.volume=47&rft.issue=9&rft.spage=1806&rft.epage=1811&rft.pages=1806-1811&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/j.microrel.2007.07.061&rft_dat=%3Celsevier_osti_%3ES0026271407003320%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0026271407003320&rfr_iscdi=true |