Improvement in the hydrogenation-dehydrogenation performance of a Mg–Al alloy by graphene supported Ni

Mg-based materials are very promising candidates for hydrogen storage. In this paper, the graphene supported Ni was introduced to the Mg90Al10 system by hydrogenation synthesis (HS) and mechanical milling (MM). The 80 wt%Ni@Gn catalyst was synthesized by a facile chemical reduction method. The micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2020-01, Vol.45 (1), p.798-808
Hauptverfasser: Huang, H.X., Yuan, J.G., Zhang, B., Zhang, J.G., Zhu, Y.F., Li, L.Q., Wu, Y., Zhou, S.X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 808
container_issue 1
container_start_page 798
container_title International journal of hydrogen energy
container_volume 45
creator Huang, H.X.
Yuan, J.G.
Zhang, B.
Zhang, J.G.
Zhu, Y.F.
Li, L.Q.
Wu, Y.
Zhou, S.X.
description Mg-based materials are very promising candidates for hydrogen storage. In this paper, the graphene supported Ni was introduced to the Mg90Al10 system by hydrogenation synthesis (HS) and mechanical milling (MM). The 80 wt%Ni@Gn catalyst was synthesized by a facile chemical reduction method. The microstructures of the catalyst and composite show that Ni nanoparticles are well supported on the surface of graphene and they are dispersed uniformly on the surface of MgH2 particles. After heating to 450 °C and holding at 340 °C for 2 h subsequently under 2.0 MPa hydrogen pressure, all the samples are almost completely hydrogenated. According to the temperature programmed desorption test, the Mg90Al10-8(80 wt%Ni@Gn) composite could desorb 5.85 wt% H2 which comes up to 96% of the theoretical hydrogen storage capacity. Moreover, it shows the optimal hydriding/dehydriding performance, absorbing 5.11 wt% hydrogen within 400 s at 523 K, and desorbing 5.81 wt% hydrogen within 1800 s at 573 K. •The addition of 80 wt%Ni@Ni catalyst results in an increase of hydrogen absorption/desorption capacity.•The Mg90Al10-8(80 wt%Ni@Ni) composite exhibits better hydriding/dehydriding performance compared to other samples.•The hydrogen storage properties are improved due to a synergistic catalysis of Al and graphene supported Ni.
doi_str_mv 10.1016/j.ijhydene.2019.10.242
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1702729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319919341394</els_id><sourcerecordid>S0360319919341394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d773182b024a79eacb9bdb9fb2badcda92d70029e17c83d7b30426f6a8cd6c2a3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwC8hin-BHFMc7qopHJR4bWEd-TBpHaRw5oVJ2_AN_yJfgqLBgxWo0ozv3zhyELilJKaH5dZO6pp4sdJAyQmUcpixjR2hBCyETnhXiGC0Iz0nCqZSn6GwYGkKoIJlcoHqz64Pfww66EbsOjzXgaBb8Fjo1Ot8lFv70uIdQ-bBTnQHsK6zw0_br43PVYtW2fsJ6wtug-jqeg4f3vvdhBIuf3Tk6qVQ7wMVPXaK3u9vX9UPy-HK_Wa8eE8MLMSZWCE4LpgnLlJCgjJbaallpppU1VklmBSFMAhWm4FZoTjKWV7kqjM0NU3yJrg6-fhhdORg3gqmN7zowYxmfZoLJKMoPIhP8MASoyj64nQpTSUk5Qy2b8hdqOUOd5xFqXLw5LEJ8Ye8gzAkQUVgX5gDr3X8W32ooh04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improvement in the hydrogenation-dehydrogenation performance of a Mg–Al alloy by graphene supported Ni</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huang, H.X. ; Yuan, J.G. ; Zhang, B. ; Zhang, J.G. ; Zhu, Y.F. ; Li, L.Q. ; Wu, Y. ; Zhou, S.X.</creator><creatorcontrib>Huang, H.X. ; Yuan, J.G. ; Zhang, B. ; Zhang, J.G. ; Zhu, Y.F. ; Li, L.Q. ; Wu, Y. ; Zhou, S.X.</creatorcontrib><description>Mg-based materials are very promising candidates for hydrogen storage. In this paper, the graphene supported Ni was introduced to the Mg90Al10 system by hydrogenation synthesis (HS) and mechanical milling (MM). The 80 wt%Ni@Gn catalyst was synthesized by a facile chemical reduction method. The microstructures of the catalyst and composite show that Ni nanoparticles are well supported on the surface of graphene and they are dispersed uniformly on the surface of MgH2 particles. After heating to 450 °C and holding at 340 °C for 2 h subsequently under 2.0 MPa hydrogen pressure, all the samples are almost completely hydrogenated. According to the temperature programmed desorption test, the Mg90Al10-8(80 wt%Ni@Gn) composite could desorb 5.85 wt% H2 which comes up to 96% of the theoretical hydrogen storage capacity. Moreover, it shows the optimal hydriding/dehydriding performance, absorbing 5.11 wt% hydrogen within 400 s at 523 K, and desorbing 5.81 wt% hydrogen within 1800 s at 573 K. •The addition of 80 wt%Ni@Ni catalyst results in an increase of hydrogen absorption/desorption capacity.•The Mg90Al10-8(80 wt%Ni@Ni) composite exhibits better hydriding/dehydriding performance compared to other samples.•The hydrogen storage properties are improved due to a synergistic catalysis of Al and graphene supported Ni.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2019.10.242</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Catalytic effect ; Graphene supported Ni ; Hydrogen storage ; Mg-based materials</subject><ispartof>International journal of hydrogen energy, 2020-01, Vol.45 (1), p.798-808</ispartof><rights>2019 Hydrogen Energy Publications LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d773182b024a79eacb9bdb9fb2badcda92d70029e17c83d7b30426f6a8cd6c2a3</citedby><cites>FETCH-LOGICAL-c387t-d773182b024a79eacb9bdb9fb2badcda92d70029e17c83d7b30426f6a8cd6c2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2019.10.242$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1702729$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, H.X.</creatorcontrib><creatorcontrib>Yuan, J.G.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Zhang, J.G.</creatorcontrib><creatorcontrib>Zhu, Y.F.</creatorcontrib><creatorcontrib>Li, L.Q.</creatorcontrib><creatorcontrib>Wu, Y.</creatorcontrib><creatorcontrib>Zhou, S.X.</creatorcontrib><title>Improvement in the hydrogenation-dehydrogenation performance of a Mg–Al alloy by graphene supported Ni</title><title>International journal of hydrogen energy</title><description>Mg-based materials are very promising candidates for hydrogen storage. In this paper, the graphene supported Ni was introduced to the Mg90Al10 system by hydrogenation synthesis (HS) and mechanical milling (MM). The 80 wt%Ni@Gn catalyst was synthesized by a facile chemical reduction method. The microstructures of the catalyst and composite show that Ni nanoparticles are well supported on the surface of graphene and they are dispersed uniformly on the surface of MgH2 particles. After heating to 450 °C and holding at 340 °C for 2 h subsequently under 2.0 MPa hydrogen pressure, all the samples are almost completely hydrogenated. According to the temperature programmed desorption test, the Mg90Al10-8(80 wt%Ni@Gn) composite could desorb 5.85 wt% H2 which comes up to 96% of the theoretical hydrogen storage capacity. Moreover, it shows the optimal hydriding/dehydriding performance, absorbing 5.11 wt% hydrogen within 400 s at 523 K, and desorbing 5.81 wt% hydrogen within 1800 s at 573 K. •The addition of 80 wt%Ni@Ni catalyst results in an increase of hydrogen absorption/desorption capacity.•The Mg90Al10-8(80 wt%Ni@Ni) composite exhibits better hydriding/dehydriding performance compared to other samples.•The hydrogen storage properties are improved due to a synergistic catalysis of Al and graphene supported Ni.</description><subject>Catalytic effect</subject><subject>Graphene supported Ni</subject><subject>Hydrogen storage</subject><subject>Mg-based materials</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwC8hin-BHFMc7qopHJR4bWEd-TBpHaRw5oVJ2_AN_yJfgqLBgxWo0ozv3zhyELilJKaH5dZO6pp4sdJAyQmUcpixjR2hBCyETnhXiGC0Iz0nCqZSn6GwYGkKoIJlcoHqz64Pfww66EbsOjzXgaBb8Fjo1Ot8lFv70uIdQ-bBTnQHsK6zw0_br43PVYtW2fsJ6wtug-jqeg4f3vvdhBIuf3Tk6qVQ7wMVPXaK3u9vX9UPy-HK_Wa8eE8MLMSZWCE4LpgnLlJCgjJbaallpppU1VklmBSFMAhWm4FZoTjKWV7kqjM0NU3yJrg6-fhhdORg3gqmN7zowYxmfZoLJKMoPIhP8MASoyj64nQpTSUk5Qy2b8hdqOUOd5xFqXLw5LEJ8Ye8gzAkQUVgX5gDr3X8W32ooh04</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Huang, H.X.</creator><creator>Yuan, J.G.</creator><creator>Zhang, B.</creator><creator>Zhang, J.G.</creator><creator>Zhu, Y.F.</creator><creator>Li, L.Q.</creator><creator>Wu, Y.</creator><creator>Zhou, S.X.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20200101</creationdate><title>Improvement in the hydrogenation-dehydrogenation performance of a Mg–Al alloy by graphene supported Ni</title><author>Huang, H.X. ; Yuan, J.G. ; Zhang, B. ; Zhang, J.G. ; Zhu, Y.F. ; Li, L.Q. ; Wu, Y. ; Zhou, S.X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d773182b024a79eacb9bdb9fb2badcda92d70029e17c83d7b30426f6a8cd6c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic effect</topic><topic>Graphene supported Ni</topic><topic>Hydrogen storage</topic><topic>Mg-based materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, H.X.</creatorcontrib><creatorcontrib>Yuan, J.G.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Zhang, J.G.</creatorcontrib><creatorcontrib>Zhu, Y.F.</creatorcontrib><creatorcontrib>Li, L.Q.</creatorcontrib><creatorcontrib>Wu, Y.</creatorcontrib><creatorcontrib>Zhou, S.X.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, H.X.</au><au>Yuan, J.G.</au><au>Zhang, B.</au><au>Zhang, J.G.</au><au>Zhu, Y.F.</au><au>Li, L.Q.</au><au>Wu, Y.</au><au>Zhou, S.X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement in the hydrogenation-dehydrogenation performance of a Mg–Al alloy by graphene supported Ni</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>45</volume><issue>1</issue><spage>798</spage><epage>808</epage><pages>798-808</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>Mg-based materials are very promising candidates for hydrogen storage. In this paper, the graphene supported Ni was introduced to the Mg90Al10 system by hydrogenation synthesis (HS) and mechanical milling (MM). The 80 wt%Ni@Gn catalyst was synthesized by a facile chemical reduction method. The microstructures of the catalyst and composite show that Ni nanoparticles are well supported on the surface of graphene and they are dispersed uniformly on the surface of MgH2 particles. After heating to 450 °C and holding at 340 °C for 2 h subsequently under 2.0 MPa hydrogen pressure, all the samples are almost completely hydrogenated. According to the temperature programmed desorption test, the Mg90Al10-8(80 wt%Ni@Gn) composite could desorb 5.85 wt% H2 which comes up to 96% of the theoretical hydrogen storage capacity. Moreover, it shows the optimal hydriding/dehydriding performance, absorbing 5.11 wt% hydrogen within 400 s at 523 K, and desorbing 5.81 wt% hydrogen within 1800 s at 573 K. •The addition of 80 wt%Ni@Ni catalyst results in an increase of hydrogen absorption/desorption capacity.•The Mg90Al10-8(80 wt%Ni@Ni) composite exhibits better hydriding/dehydriding performance compared to other samples.•The hydrogen storage properties are improved due to a synergistic catalysis of Al and graphene supported Ni.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2019.10.242</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2020-01, Vol.45 (1), p.798-808
issn 0360-3199
1879-3487
language eng
recordid cdi_osti_scitechconnect_1702729
source ScienceDirect Journals (5 years ago - present)
subjects Catalytic effect
Graphene supported Ni
Hydrogen storage
Mg-based materials
title Improvement in the hydrogenation-dehydrogenation performance of a Mg–Al alloy by graphene supported Ni
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20in%20the%20hydrogenation-dehydrogenation%20performance%20of%20a%20Mg%E2%80%93Al%20alloy%20by%20graphene%20supported%20Ni&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Huang,%20H.X.&rft.date=2020-01-01&rft.volume=45&rft.issue=1&rft.spage=798&rft.epage=808&rft.pages=798-808&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2019.10.242&rft_dat=%3Celsevier_osti_%3ES0360319919341394%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0360319919341394&rfr_iscdi=true