Rational design of a Yarrowia lipolytica derived lipase for improved thermostability
To improve the thermostability of the lipase LIP2 from Yarrowia lipolytica, molecular dynamics (MD) simulations at various temperatures were used to investigate the common fluctuation sites of the protein, which are considered to be thermally weak points. Two of these residues were selected for muta...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2019-09, Vol.137 (C), p.1190-1198 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1198 |
---|---|
container_issue | C |
container_start_page | 1190 |
container_title | International journal of biological macromolecules |
container_volume | 137 |
creator | Zhang, Huitu Sang, Jingcheng Zhang, Ying Sun, Tongwei Liu, Huan Yue, Rong Zhang, Jing Wang, Haikuan Dai, Yujie Lu, Fuping Liu, Fufeng |
description | To improve the thermostability of the lipase LIP2 from Yarrowia lipolytica, molecular dynamics (MD) simulations at various temperatures were used to investigate the common fluctuation sites of the protein, which are considered to be thermally weak points. Two of these residues were selected for mutations to improve the enzyme's thermostability, and the variants predicted by MD simulations to have improved thermostability were expressed in Pichia pastoris GS115 for further investigations. According to the proline rule, the high fluctuation site S115 or V213 was replaced with proline residue, the two lipase mutants S115P and V213P were obtained. The mutant V213P exhibited evidently enhanced thermostability with an approximately 70% longer half-life at 50 °C than that of the parent LIP2 expressed in P. pastoris. The temperature optimum of V213P was 42 °C, which was about 5.0 °C higher than that of the parent LIP2, while its specific catalytic activity was comparable to that of the parent and reached 876.5 U/mg. The improved thermostability of V213P together with its high catalytic efficiency indicated that the rational design strategy employed here can be efficiently applied for structure optimization of industrially important enzymes.
[Display omitted] |
doi_str_mv | 10.1016/j.ijbiomac.2019.07.070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1702513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813019337481</els_id><sourcerecordid>2257717998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b2b32d3ed59c61a3fb81c58bcf54076887ccc71940e530e4d5f279ed2d46b8a3</originalsourceid><addsrcrecordid>eNqFkF9rFDEUxYNY7Fr9CmXwyZdZ82cySd6UYqtQEMq--BQyyR17l5nJmmQr--3NsK2vwoXAub-bcziEXDO6ZZT1n_Zb3A8YZ-e3nDKzpaoOfUU2TCvTUkrFa7KhrGOtZoJekrc576vaS6bfkEvBuDFcdhuye3AF4-KmJkDGX0sTx8Y1P11K8Q-6ZsJDnE4Fvav7hE8QVsllaMaYGpwPKa5aeYQ0x1zcgBOW0ztyMbopw_vn94rsbr_ubr619z_uvt98uW9914nSDnwQPAgI0vieOTEOmnmpBz_Kjqpea-W9V8x0FKSg0AU5cmUg8ND1g3biinw4f1ud0WaPBfyjj8sCvlimKJdMVOjjGapRfx8hFztj9jBNboF4zJZzqRRTxuiK9mfUp5hzgtEeEs4unSyjdm3d7u1L63Zt3VJVh9bD62eP4zBD-Hf2UnMFPp8BqG08IaQ1LSweAqY1bIj4P4-_0yyXXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257717998</pqid></control><display><type>article</type><title>Rational design of a Yarrowia lipolytica derived lipase for improved thermostability</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Huitu ; Sang, Jingcheng ; Zhang, Ying ; Sun, Tongwei ; Liu, Huan ; Yue, Rong ; Zhang, Jing ; Wang, Haikuan ; Dai, Yujie ; Lu, Fuping ; Liu, Fufeng</creator><creatorcontrib>Zhang, Huitu ; Sang, Jingcheng ; Zhang, Ying ; Sun, Tongwei ; Liu, Huan ; Yue, Rong ; Zhang, Jing ; Wang, Haikuan ; Dai, Yujie ; Lu, Fuping ; Liu, Fufeng</creatorcontrib><description>To improve the thermostability of the lipase LIP2 from Yarrowia lipolytica, molecular dynamics (MD) simulations at various temperatures were used to investigate the common fluctuation sites of the protein, which are considered to be thermally weak points. Two of these residues were selected for mutations to improve the enzyme's thermostability, and the variants predicted by MD simulations to have improved thermostability were expressed in Pichia pastoris GS115 for further investigations. According to the proline rule, the high fluctuation site S115 or V213 was replaced with proline residue, the two lipase mutants S115P and V213P were obtained. The mutant V213P exhibited evidently enhanced thermostability with an approximately 70% longer half-life at 50 °C than that of the parent LIP2 expressed in P. pastoris. The temperature optimum of V213P was 42 °C, which was about 5.0 °C higher than that of the parent LIP2, while its specific catalytic activity was comparable to that of the parent and reached 876.5 U/mg. The improved thermostability of V213P together with its high catalytic efficiency indicated that the rational design strategy employed here can be efficiently applied for structure optimization of industrially important enzymes.
[Display omitted]</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2019.07.070</identifier><identifier>PMID: 31299254</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biocatalysis ; Enzyme Stability - genetics ; Hot Temperature ; Lipase ; Lipase - chemistry ; Lipase - genetics ; Lipase - metabolism ; Molecular Dynamics Simulation ; Molecular dynamics simulations ; Mutation ; Protein Conformation ; Protein Engineering ; Temperature ; Thermostability ; Yarrowia - enzymology ; Yarrowia lipolytica</subject><ispartof>International journal of biological macromolecules, 2019-09, Vol.137 (C), p.1190-1198</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b2b32d3ed59c61a3fb81c58bcf54076887ccc71940e530e4d5f279ed2d46b8a3</citedby><cites>FETCH-LOGICAL-c443t-b2b32d3ed59c61a3fb81c58bcf54076887ccc71940e530e4d5f279ed2d46b8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2019.07.070$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31299254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1702513$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Huitu</creatorcontrib><creatorcontrib>Sang, Jingcheng</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Sun, Tongwei</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Yue, Rong</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Wang, Haikuan</creatorcontrib><creatorcontrib>Dai, Yujie</creatorcontrib><creatorcontrib>Lu, Fuping</creatorcontrib><creatorcontrib>Liu, Fufeng</creatorcontrib><title>Rational design of a Yarrowia lipolytica derived lipase for improved thermostability</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>To improve the thermostability of the lipase LIP2 from Yarrowia lipolytica, molecular dynamics (MD) simulations at various temperatures were used to investigate the common fluctuation sites of the protein, which are considered to be thermally weak points. Two of these residues were selected for mutations to improve the enzyme's thermostability, and the variants predicted by MD simulations to have improved thermostability were expressed in Pichia pastoris GS115 for further investigations. According to the proline rule, the high fluctuation site S115 or V213 was replaced with proline residue, the two lipase mutants S115P and V213P were obtained. The mutant V213P exhibited evidently enhanced thermostability with an approximately 70% longer half-life at 50 °C than that of the parent LIP2 expressed in P. pastoris. The temperature optimum of V213P was 42 °C, which was about 5.0 °C higher than that of the parent LIP2, while its specific catalytic activity was comparable to that of the parent and reached 876.5 U/mg. The improved thermostability of V213P together with its high catalytic efficiency indicated that the rational design strategy employed here can be efficiently applied for structure optimization of industrially important enzymes.
[Display omitted]</description><subject>Biocatalysis</subject><subject>Enzyme Stability - genetics</subject><subject>Hot Temperature</subject><subject>Lipase</subject><subject>Lipase - chemistry</subject><subject>Lipase - genetics</subject><subject>Lipase - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular dynamics simulations</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Temperature</subject><subject>Thermostability</subject><subject>Yarrowia - enzymology</subject><subject>Yarrowia lipolytica</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF9rFDEUxYNY7Fr9CmXwyZdZ82cySd6UYqtQEMq--BQyyR17l5nJmmQr--3NsK2vwoXAub-bcziEXDO6ZZT1n_Zb3A8YZ-e3nDKzpaoOfUU2TCvTUkrFa7KhrGOtZoJekrc576vaS6bfkEvBuDFcdhuye3AF4-KmJkDGX0sTx8Y1P11K8Q-6ZsJDnE4Fvav7hE8QVsllaMaYGpwPKa5aeYQ0x1zcgBOW0ztyMbopw_vn94rsbr_ubr619z_uvt98uW9914nSDnwQPAgI0vieOTEOmnmpBz_Kjqpea-W9V8x0FKSg0AU5cmUg8ND1g3biinw4f1ud0WaPBfyjj8sCvlimKJdMVOjjGapRfx8hFztj9jBNboF4zJZzqRRTxuiK9mfUp5hzgtEeEs4unSyjdm3d7u1L63Zt3VJVh9bD62eP4zBD-Hf2UnMFPp8BqG08IaQ1LSweAqY1bIj4P4-_0yyXXg</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Zhang, Huitu</creator><creator>Sang, Jingcheng</creator><creator>Zhang, Ying</creator><creator>Sun, Tongwei</creator><creator>Liu, Huan</creator><creator>Yue, Rong</creator><creator>Zhang, Jing</creator><creator>Wang, Haikuan</creator><creator>Dai, Yujie</creator><creator>Lu, Fuping</creator><creator>Liu, Fufeng</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20190915</creationdate><title>Rational design of a Yarrowia lipolytica derived lipase for improved thermostability</title><author>Zhang, Huitu ; Sang, Jingcheng ; Zhang, Ying ; Sun, Tongwei ; Liu, Huan ; Yue, Rong ; Zhang, Jing ; Wang, Haikuan ; Dai, Yujie ; Lu, Fuping ; Liu, Fufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b2b32d3ed59c61a3fb81c58bcf54076887ccc71940e530e4d5f279ed2d46b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocatalysis</topic><topic>Enzyme Stability - genetics</topic><topic>Hot Temperature</topic><topic>Lipase</topic><topic>Lipase - chemistry</topic><topic>Lipase - genetics</topic><topic>Lipase - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular dynamics simulations</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Temperature</topic><topic>Thermostability</topic><topic>Yarrowia - enzymology</topic><topic>Yarrowia lipolytica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huitu</creatorcontrib><creatorcontrib>Sang, Jingcheng</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Sun, Tongwei</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Yue, Rong</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Wang, Haikuan</creatorcontrib><creatorcontrib>Dai, Yujie</creatorcontrib><creatorcontrib>Lu, Fuping</creatorcontrib><creatorcontrib>Liu, Fufeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huitu</au><au>Sang, Jingcheng</au><au>Zhang, Ying</au><au>Sun, Tongwei</au><au>Liu, Huan</au><au>Yue, Rong</au><au>Zhang, Jing</au><au>Wang, Haikuan</au><au>Dai, Yujie</au><au>Lu, Fuping</au><au>Liu, Fufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of a Yarrowia lipolytica derived lipase for improved thermostability</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2019-09-15</date><risdate>2019</risdate><volume>137</volume><issue>C</issue><spage>1190</spage><epage>1198</epage><pages>1190-1198</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>To improve the thermostability of the lipase LIP2 from Yarrowia lipolytica, molecular dynamics (MD) simulations at various temperatures were used to investigate the common fluctuation sites of the protein, which are considered to be thermally weak points. Two of these residues were selected for mutations to improve the enzyme's thermostability, and the variants predicted by MD simulations to have improved thermostability were expressed in Pichia pastoris GS115 for further investigations. According to the proline rule, the high fluctuation site S115 or V213 was replaced with proline residue, the two lipase mutants S115P and V213P were obtained. The mutant V213P exhibited evidently enhanced thermostability with an approximately 70% longer half-life at 50 °C than that of the parent LIP2 expressed in P. pastoris. The temperature optimum of V213P was 42 °C, which was about 5.0 °C higher than that of the parent LIP2, while its specific catalytic activity was comparable to that of the parent and reached 876.5 U/mg. The improved thermostability of V213P together with its high catalytic efficiency indicated that the rational design strategy employed here can be efficiently applied for structure optimization of industrially important enzymes.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31299254</pmid><doi>10.1016/j.ijbiomac.2019.07.070</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2019-09, Vol.137 (C), p.1190-1198 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_osti_scitechconnect_1702513 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Biocatalysis Enzyme Stability - genetics Hot Temperature Lipase Lipase - chemistry Lipase - genetics Lipase - metabolism Molecular Dynamics Simulation Molecular dynamics simulations Mutation Protein Conformation Protein Engineering Temperature Thermostability Yarrowia - enzymology Yarrowia lipolytica |
title | Rational design of a Yarrowia lipolytica derived lipase for improved thermostability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20a%20Yarrowia%20lipolytica%20derived%20lipase%20for%20improved%20thermostability&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Zhang,%20Huitu&rft.date=2019-09-15&rft.volume=137&rft.issue=C&rft.spage=1190&rft.epage=1198&rft.pages=1190-1198&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2019.07.070&rft_dat=%3Cproquest_osti_%3E2257717998%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257717998&rft_id=info:pmid/31299254&rft_els_id=S0141813019337481&rfr_iscdi=true |