The passivity of low-temperature carburized austenitic stainless steel AISI-316L in a simulated boiling-water-reactor environment

The passive film on low-temperature-carburized AISI-316L austenitic stainless steel was studied in an oxygenated, simulated boiling-water-reactor environment with normal water chemistry. The microstructure was studied using scanning electron microscopy, grazing-incidence X-ray diffractometry, Auger...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2020-08, Vol.537 (C), p.152197, Article 152197
Hauptverfasser: Niu, W., Li, Z., Ernst, F., Lillard, R.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 152197
container_title Journal of nuclear materials
container_volume 537
creator Niu, W.
Li, Z.
Ernst, F.
Lillard, R.S.
description The passive film on low-temperature-carburized AISI-316L austenitic stainless steel was studied in an oxygenated, simulated boiling-water-reactor environment with normal water chemistry. The microstructure was studied using scanning electron microscopy, grazing-incidence X-ray diffractometry, Auger electron spectroscopy, X-ray energy-dispersive spectroscopy, and transmission electron microscopy. For non-surface engineered AISI-316L, three distinct layers were observed after exposure: an outer layer of larger nickel-oxide enriched particles with the spinel structure, an intermediate layer of small Cr-oxide-enriched hematite particles, and a compact inner layer of Cr-enriched oxide also having the spinel structure. Exposure of low-temperature-carburized AISI-316L, in contrast, resulted in only two distinct layers. These layers did not include a compact Cr-rich inner layer. Instead, the innermost layer consisted of an oxide with the spinel structure that was a mixture of Fe, Cr and Ni oxide. The outer layer on the low-temperature-carburized specimen consisted of large loosely stacked particles with the spinel structure of mixed composition. In addition to passive-film characterization, the corrosion rate was studied by monitoring mass loss. After 500 h of immersion, the mass changes measured were relatively low for all specimens indicating good adhesion and low oxidation rates.
doi_str_mv 10.1016/j.jnucmat.2020.152197
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1701817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311520300763</els_id><sourcerecordid>2442964764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-e2461bd428147e7a90a8fe4e1dd4b729e12a4fa7d5802ec573b3b695fc151c933</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EEkvhJyBZcM7icew4OaGqorDSSj1QzpbjTKijxF5sZ6ty45_jVXrvaTzW957e6BHyEdgeGDRfpv3kV7uYvOeMlz_JoVOvyA5aVVei5ew12THGeVUDyLfkXUoTY0x2TO7Iv_sHpCeTkju7_ETDSOfwWGVcThhNXiNSa2K_RvcXB2rWlNG77CxN2Tg_Y0rlhTjT68PPQ_FvjtR5amhyyzqbXDR9cLPzv6vHssUqorE5RIr-7GLwC_r8nrwZzZzww_O8Ir9uv93f_KiOd98PN9fHygqAXCEXDfSD4C0Ihcp0zLQjCoRhEL3iHQI3YjRqkC3jaKWq-7pvOjlakGC7ur4inzbfkLLTybqM9sEG79FmDYpBC6pAnzfoFMOfFVPWU1ijL7k0F4J3jVCNKJTcKBtDShFHfYpuMfFJA9OXSvSknyvRl0r0VknRfd10WO48O4yXGOgtDi5eUgzBveDwH2OamNU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442964764</pqid></control><display><type>article</type><title>The passivity of low-temperature carburized austenitic stainless steel AISI-316L in a simulated boiling-water-reactor environment</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Niu, W. ; Li, Z. ; Ernst, F. ; Lillard, R.S.</creator><creatorcontrib>Niu, W. ; Li, Z. ; Ernst, F. ; Lillard, R.S.</creatorcontrib><description>The passive film on low-temperature-carburized AISI-316L austenitic stainless steel was studied in an oxygenated, simulated boiling-water-reactor environment with normal water chemistry. The microstructure was studied using scanning electron microscopy, grazing-incidence X-ray diffractometry, Auger electron spectroscopy, X-ray energy-dispersive spectroscopy, and transmission electron microscopy. For non-surface engineered AISI-316L, three distinct layers were observed after exposure: an outer layer of larger nickel-oxide enriched particles with the spinel structure, an intermediate layer of small Cr-oxide-enriched hematite particles, and a compact inner layer of Cr-enriched oxide also having the spinel structure. Exposure of low-temperature-carburized AISI-316L, in contrast, resulted in only two distinct layers. These layers did not include a compact Cr-rich inner layer. Instead, the innermost layer consisted of an oxide with the spinel structure that was a mixture of Fe, Cr and Ni oxide. The outer layer on the low-temperature-carburized specimen consisted of large loosely stacked particles with the spinel structure of mixed composition. In addition to passive-film characterization, the corrosion rate was studied by monitoring mass loss. After 500 h of immersion, the mass changes measured were relatively low for all specimens indicating good adhesion and low oxidation rates.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2020.152197</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AISI-316L ; Austenitic stainless steels ; Boiling ; Boiling water reactors ; Boiling-water reactor ; Carburization (corrosion) ; Computer simulation ; Corrosion rate ; Electron microscopy ; Energy dispersive X ray spectroscopy ; Enrichment ; Exposure ; Hematite ; Low temperature ; Low-temperature carburization ; Microscopy ; Nickel ; Oxidation ; Passive film ; Reactors ; Scanning electron microscopy ; Spectroscopy ; Spinel ; Stainless steel ; Submerging ; Surface engineering by concentrated interstitial solute ; Transmission electron microscopy ; Water chemistry</subject><ispartof>Journal of nuclear materials, 2020-08, Vol.537 (C), p.152197, Article 152197</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-e2461bd428147e7a90a8fe4e1dd4b729e12a4fa7d5802ec573b3b695fc151c933</citedby><cites>FETCH-LOGICAL-c411t-e2461bd428147e7a90a8fe4e1dd4b729e12a4fa7d5802ec573b3b695fc151c933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311520300763$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1701817$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, W.</creatorcontrib><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Ernst, F.</creatorcontrib><creatorcontrib>Lillard, R.S.</creatorcontrib><title>The passivity of low-temperature carburized austenitic stainless steel AISI-316L in a simulated boiling-water-reactor environment</title><title>Journal of nuclear materials</title><description>The passive film on low-temperature-carburized AISI-316L austenitic stainless steel was studied in an oxygenated, simulated boiling-water-reactor environment with normal water chemistry. The microstructure was studied using scanning electron microscopy, grazing-incidence X-ray diffractometry, Auger electron spectroscopy, X-ray energy-dispersive spectroscopy, and transmission electron microscopy. For non-surface engineered AISI-316L, three distinct layers were observed after exposure: an outer layer of larger nickel-oxide enriched particles with the spinel structure, an intermediate layer of small Cr-oxide-enriched hematite particles, and a compact inner layer of Cr-enriched oxide also having the spinel structure. Exposure of low-temperature-carburized AISI-316L, in contrast, resulted in only two distinct layers. These layers did not include a compact Cr-rich inner layer. Instead, the innermost layer consisted of an oxide with the spinel structure that was a mixture of Fe, Cr and Ni oxide. The outer layer on the low-temperature-carburized specimen consisted of large loosely stacked particles with the spinel structure of mixed composition. In addition to passive-film characterization, the corrosion rate was studied by monitoring mass loss. After 500 h of immersion, the mass changes measured were relatively low for all specimens indicating good adhesion and low oxidation rates.</description><subject>AISI-316L</subject><subject>Austenitic stainless steels</subject><subject>Boiling</subject><subject>Boiling water reactors</subject><subject>Boiling-water reactor</subject><subject>Carburization (corrosion)</subject><subject>Computer simulation</subject><subject>Corrosion rate</subject><subject>Electron microscopy</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Enrichment</subject><subject>Exposure</subject><subject>Hematite</subject><subject>Low temperature</subject><subject>Low-temperature carburization</subject><subject>Microscopy</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Passive film</subject><subject>Reactors</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Spinel</subject><subject>Stainless steel</subject><subject>Submerging</subject><subject>Surface engineering by concentrated interstitial solute</subject><subject>Transmission electron microscopy</subject><subject>Water chemistry</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EEkvhJyBZcM7icew4OaGqorDSSj1QzpbjTKijxF5sZ6ty45_jVXrvaTzW957e6BHyEdgeGDRfpv3kV7uYvOeMlz_JoVOvyA5aVVei5ew12THGeVUDyLfkXUoTY0x2TO7Iv_sHpCeTkju7_ETDSOfwWGVcThhNXiNSa2K_RvcXB2rWlNG77CxN2Tg_Y0rlhTjT68PPQ_FvjtR5amhyyzqbXDR9cLPzv6vHssUqorE5RIr-7GLwC_r8nrwZzZzww_O8Ir9uv93f_KiOd98PN9fHygqAXCEXDfSD4C0Ihcp0zLQjCoRhEL3iHQI3YjRqkC3jaKWq-7pvOjlakGC7ur4inzbfkLLTybqM9sEG79FmDYpBC6pAnzfoFMOfFVPWU1ijL7k0F4J3jVCNKJTcKBtDShFHfYpuMfFJA9OXSvSknyvRl0r0VknRfd10WO48O4yXGOgtDi5eUgzBveDwH2OamNU</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Niu, W.</creator><creator>Li, Z.</creator><creator>Ernst, F.</creator><creator>Lillard, R.S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20200815</creationdate><title>The passivity of low-temperature carburized austenitic stainless steel AISI-316L in a simulated boiling-water-reactor environment</title><author>Niu, W. ; Li, Z. ; Ernst, F. ; Lillard, R.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-e2461bd428147e7a90a8fe4e1dd4b729e12a4fa7d5802ec573b3b695fc151c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AISI-316L</topic><topic>Austenitic stainless steels</topic><topic>Boiling</topic><topic>Boiling water reactors</topic><topic>Boiling-water reactor</topic><topic>Carburization (corrosion)</topic><topic>Computer simulation</topic><topic>Corrosion rate</topic><topic>Electron microscopy</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Enrichment</topic><topic>Exposure</topic><topic>Hematite</topic><topic>Low temperature</topic><topic>Low-temperature carburization</topic><topic>Microscopy</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Passive film</topic><topic>Reactors</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Spinel</topic><topic>Stainless steel</topic><topic>Submerging</topic><topic>Surface engineering by concentrated interstitial solute</topic><topic>Transmission electron microscopy</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, W.</creatorcontrib><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Ernst, F.</creatorcontrib><creatorcontrib>Lillard, R.S.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, W.</au><au>Li, Z.</au><au>Ernst, F.</au><au>Lillard, R.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The passivity of low-temperature carburized austenitic stainless steel AISI-316L in a simulated boiling-water-reactor environment</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>537</volume><issue>C</issue><spage>152197</spage><pages>152197-</pages><artnum>152197</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The passive film on low-temperature-carburized AISI-316L austenitic stainless steel was studied in an oxygenated, simulated boiling-water-reactor environment with normal water chemistry. The microstructure was studied using scanning electron microscopy, grazing-incidence X-ray diffractometry, Auger electron spectroscopy, X-ray energy-dispersive spectroscopy, and transmission electron microscopy. For non-surface engineered AISI-316L, three distinct layers were observed after exposure: an outer layer of larger nickel-oxide enriched particles with the spinel structure, an intermediate layer of small Cr-oxide-enriched hematite particles, and a compact inner layer of Cr-enriched oxide also having the spinel structure. Exposure of low-temperature-carburized AISI-316L, in contrast, resulted in only two distinct layers. These layers did not include a compact Cr-rich inner layer. Instead, the innermost layer consisted of an oxide with the spinel structure that was a mixture of Fe, Cr and Ni oxide. The outer layer on the low-temperature-carburized specimen consisted of large loosely stacked particles with the spinel structure of mixed composition. In addition to passive-film characterization, the corrosion rate was studied by monitoring mass loss. After 500 h of immersion, the mass changes measured were relatively low for all specimens indicating good adhesion and low oxidation rates.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2020.152197</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2020-08, Vol.537 (C), p.152197, Article 152197
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1701817
source ScienceDirect Journals (5 years ago - present)
subjects AISI-316L
Austenitic stainless steels
Boiling
Boiling water reactors
Boiling-water reactor
Carburization (corrosion)
Computer simulation
Corrosion rate
Electron microscopy
Energy dispersive X ray spectroscopy
Enrichment
Exposure
Hematite
Low temperature
Low-temperature carburization
Microscopy
Nickel
Oxidation
Passive film
Reactors
Scanning electron microscopy
Spectroscopy
Spinel
Stainless steel
Submerging
Surface engineering by concentrated interstitial solute
Transmission electron microscopy
Water chemistry
title The passivity of low-temperature carburized austenitic stainless steel AISI-316L in a simulated boiling-water-reactor environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20passivity%20of%20low-temperature%20carburized%20austenitic%20stainless%20steel%20AISI-316L%20in%20a%20simulated%20boiling-water-reactor%20environment&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Niu,%20W.&rft.date=2020-08-15&rft.volume=537&rft.issue=C&rft.spage=152197&rft.pages=152197-&rft.artnum=152197&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2020.152197&rft_dat=%3Cproquest_osti_%3E2442964764%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442964764&rft_id=info:pmid/&rft_els_id=S0022311520300763&rfr_iscdi=true