Portfolio optimization based on empirical mode decomposition

The investigation about the cross-correlation among financial assets has drawn broad attention recently. Due to the nonlinear and non-stationary identities of the financial time series, e.g., stock return time series, the cross-correlation for different level of fluctuations are quite important for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2019-10, Vol.531 (C), p.121813, Article 121813
Hauptverfasser: Yang, Li, Zhao, Longfeng, Wang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 121813
container_title Physica A
container_volume 531
creator Yang, Li
Zhao, Longfeng
Wang, Chao
description The investigation about the cross-correlation among financial assets has drawn broad attention recently. Due to the nonlinear and non-stationary identities of the financial time series, e.g., stock return time series, the cross-correlation for different level of fluctuations are quite important for both academia and financial practitioners. Here we use the empirical mode decomposition (EMD) method to analyze the cross-correlation structure among different level of fluctuations for financial assets. The correlation-based networks are then employed to determine the clustering property of stock market. We then propose several portfolio optimization strategies based on the EMD correlation-based networks. Using the topological information of the networks, we can construct some portfolios with high return and low risk. Under two portfolio evaluation frameworks, we prove that these portfolios have consistently good performance. •The EMD can discriminate fluctuation levels of the stock market..•The topological structure of the EMD networks signalized the market instability.•The EMD correlation-based network can improve the performance of the portfolio.
doi_str_mv 10.1016/j.physa.2019.121813
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1693810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437119309975</els_id><sourcerecordid>S0378437119309975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-47c35697fe34587ce7a01822e0674ca93f84de5d137e776f17fac0d9eb4e03653</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AjfFfWte0zYp6EIGv2BAF7oOmeSFSZk2JQnC-OttrWtX7y7uuTwOIddAC6DQ3HbFuD9GVZQU2gJKEMBOyAoEZ3kJ0J6SFWVc5BXjcE4uYuwopcBZuSJ37z4k6w_OZ35MrnffKjk_ZDsV0WRTwH50wWl1yHpvMDOofT_66ObWJTmz6hDx6u-uyefT48fmJd--Pb9uHra5ZrxOecU1q5uWW2RVLbhGriiIskTa8EqrlllRGawNMI6cNxa4VZqaFncVUtbUbE1ull0fk5NRu4R6r_0woE4SmpYJoFOJLSUdfIwBrRyD61U4SqBytiQ7-WtJzpbkYmmi7hcKp_-_HIZ5HgeNxoV53Xj3L_8DKXRxUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Portfolio optimization based on empirical mode decomposition</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Li ; Zhao, Longfeng ; Wang, Chao</creator><creatorcontrib>Yang, Li ; Zhao, Longfeng ; Wang, Chao</creatorcontrib><description>The investigation about the cross-correlation among financial assets has drawn broad attention recently. Due to the nonlinear and non-stationary identities of the financial time series, e.g., stock return time series, the cross-correlation for different level of fluctuations are quite important for both academia and financial practitioners. Here we use the empirical mode decomposition (EMD) method to analyze the cross-correlation structure among different level of fluctuations for financial assets. The correlation-based networks are then employed to determine the clustering property of stock market. We then propose several portfolio optimization strategies based on the EMD correlation-based networks. Using the topological information of the networks, we can construct some portfolios with high return and low risk. Under two portfolio evaluation frameworks, we prove that these portfolios have consistently good performance. •The EMD can discriminate fluctuation levels of the stock market..•The topological structure of the EMD networks signalized the market instability.•The EMD correlation-based network can improve the performance of the portfolio.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2019.121813</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Correlation-based network ; Empirical mode decomposition ; Portfolio optimization ; Stock market</subject><ispartof>Physica A, 2019-10, Vol.531 (C), p.121813, Article 121813</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-47c35697fe34587ce7a01822e0674ca93f84de5d137e776f17fac0d9eb4e03653</citedby><cites>FETCH-LOGICAL-c375t-47c35697fe34587ce7a01822e0674ca93f84de5d137e776f17fac0d9eb4e03653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physa.2019.121813$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1693810$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Zhao, Longfeng</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><title>Portfolio optimization based on empirical mode decomposition</title><title>Physica A</title><description>The investigation about the cross-correlation among financial assets has drawn broad attention recently. Due to the nonlinear and non-stationary identities of the financial time series, e.g., stock return time series, the cross-correlation for different level of fluctuations are quite important for both academia and financial practitioners. Here we use the empirical mode decomposition (EMD) method to analyze the cross-correlation structure among different level of fluctuations for financial assets. The correlation-based networks are then employed to determine the clustering property of stock market. We then propose several portfolio optimization strategies based on the EMD correlation-based networks. Using the topological information of the networks, we can construct some portfolios with high return and low risk. Under two portfolio evaluation frameworks, we prove that these portfolios have consistently good performance. •The EMD can discriminate fluctuation levels of the stock market..•The topological structure of the EMD networks signalized the market instability.•The EMD correlation-based network can improve the performance of the portfolio.</description><subject>Correlation-based network</subject><subject>Empirical mode decomposition</subject><subject>Portfolio optimization</subject><subject>Stock market</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AjfFfWte0zYp6EIGv2BAF7oOmeSFSZk2JQnC-OttrWtX7y7uuTwOIddAC6DQ3HbFuD9GVZQU2gJKEMBOyAoEZ3kJ0J6SFWVc5BXjcE4uYuwopcBZuSJ37z4k6w_OZ35MrnffKjk_ZDsV0WRTwH50wWl1yHpvMDOofT_66ObWJTmz6hDx6u-uyefT48fmJd--Pb9uHra5ZrxOecU1q5uWW2RVLbhGriiIskTa8EqrlllRGawNMI6cNxa4VZqaFncVUtbUbE1ull0fk5NRu4R6r_0woE4SmpYJoFOJLSUdfIwBrRyD61U4SqBytiQ7-WtJzpbkYmmi7hcKp_-_HIZ5HgeNxoV53Xj3L_8DKXRxUA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Yang, Li</creator><creator>Zhao, Longfeng</creator><creator>Wang, Chao</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20191001</creationdate><title>Portfolio optimization based on empirical mode decomposition</title><author>Yang, Li ; Zhao, Longfeng ; Wang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-47c35697fe34587ce7a01822e0674ca93f84de5d137e776f17fac0d9eb4e03653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Correlation-based network</topic><topic>Empirical mode decomposition</topic><topic>Portfolio optimization</topic><topic>Stock market</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Zhao, Longfeng</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Li</au><au>Zhao, Longfeng</au><au>Wang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portfolio optimization based on empirical mode decomposition</atitle><jtitle>Physica A</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>531</volume><issue>C</issue><spage>121813</spage><pages>121813-</pages><artnum>121813</artnum><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>The investigation about the cross-correlation among financial assets has drawn broad attention recently. Due to the nonlinear and non-stationary identities of the financial time series, e.g., stock return time series, the cross-correlation for different level of fluctuations are quite important for both academia and financial practitioners. Here we use the empirical mode decomposition (EMD) method to analyze the cross-correlation structure among different level of fluctuations for financial assets. The correlation-based networks are then employed to determine the clustering property of stock market. We then propose several portfolio optimization strategies based on the EMD correlation-based networks. Using the topological information of the networks, we can construct some portfolios with high return and low risk. Under two portfolio evaluation frameworks, we prove that these portfolios have consistently good performance. •The EMD can discriminate fluctuation levels of the stock market..•The topological structure of the EMD networks signalized the market instability.•The EMD correlation-based network can improve the performance of the portfolio.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2019.121813</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2019-10, Vol.531 (C), p.121813, Article 121813
issn 0378-4371
1873-2119
language eng
recordid cdi_osti_scitechconnect_1693810
source ScienceDirect Journals (5 years ago - present)
subjects Correlation-based network
Empirical mode decomposition
Portfolio optimization
Stock market
title Portfolio optimization based on empirical mode decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portfolio%20optimization%20based%20on%20empirical%20mode%20decomposition&rft.jtitle=Physica%20A&rft.au=Yang,%20Li&rft.date=2019-10-01&rft.volume=531&rft.issue=C&rft.spage=121813&rft.pages=121813-&rft.artnum=121813&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2019.121813&rft_dat=%3Celsevier_osti_%3ES0378437119309975%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378437119309975&rfr_iscdi=true