Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots
We present the first photoelectron spectroscopy measurements of quantum dots (semiconductor nanocrystals) in the gas phase. By coupling a nanoparticle aerosol source to a femtosecond velocity map imaging photoelectron spectrometer, we apply robust gas-phase photoelectron spectroscopy techniques to c...
Gespeichert in:
Veröffentlicht in: | Nano letters 2013-06, Vol.13 (6), p.2924-2930 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2930 |
---|---|
container_issue | 6 |
container_start_page | 2924 |
container_title | Nano letters |
container_volume | 13 |
creator | Xiong, Wei Hickstein, Daniel D Schnitzenbaumer, Kyle J Ellis, Jennifer L Palm, Brett B Keister, K. Ellen Ding, Chengyuan Miaja-Avila, Luis Dukovic, Gordana Jimenez, Jose L Murnane, Margaret M Kapteyn, Henry C |
description | We present the first photoelectron spectroscopy measurements of quantum dots (semiconductor nanocrystals) in the gas phase. By coupling a nanoparticle aerosol source to a femtosecond velocity map imaging photoelectron spectrometer, we apply robust gas-phase photoelectron spectroscopy techniques to colloidal quantum dots, which typically must be studied in a liquid solvent or while bound to a surface. Working with a flowing aerosol of quantum dots offers the additional advantages of providing fresh nanoparticles for each laser shot and removing perturbations from bonding with a surface or interactions with the solvent. In this work, we perform a two-photon photoionization experiment to show that the photoelectron yield per exciton depends on the physical size of the quantum dot, increasing for smaller dots. Next, using effective mass modeling we show that the extent to which the electron wave function of the exciton extends from the quantum dot, the so-called “evanescent electron wavefunction”, increases as the size of the quantum dot decreases. We show that the photoelectron yield is dominated by the evanescent electron density due to quantum confinement effects, the difference in the density of states inside and outside of the quantum dots, and the angle-dependent transmission probability of electrons through the surface of the quantum dot. Therefore, the photoelectron yield directly reflects the fraction of evanescent electron wave function that extends outside of the quantum dot. This work shows that gas-phase photoelectron spectroscopy is a robust and general probe of the electronic structure of quantum dots, enabling the first direct measurements of the evanescent exciton wave function. |
doi_str_mv | 10.1021/nl401309z |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1691493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753476197</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-52613aac8ff4cf575ddf9edc327be7ea0dc02429bd1a3e292fb9b4b0a91ab9943</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi0EoqVw4AWQhYQEh4D_7XrNrUrTglSgqCCO1qx3VtlqYwfbWym8Ai-NQ9L0gsTJY-k33zczHyHPOXvLmeDv_KgYl8z8ekCOeSXZrDZGPDzUjToiT1K6YYwZWbHH5EjIummEYcfk99Uy5IAjuhyDp9frv0VyYb2hoafz7hrpZ_DBxU3KMCY6eJqXSC8g0aslJHxPT-nZEEsb_YSQpojbvi2yuAWPyaHPdHGn_wNukZ5P3uWh_Ar4dQKfpxU9Czk9JY_6YoHP9u8J-X6--Db_MLv8cvFxfno5A6VYnlWi5hLANX2vXF_pqut6g52TQreoEVjnmFDCtB0HicKIvjWtahkYDq0xSp6QlzvdkPJgkxsyuqUL3pchLa8NV0YW6PUOWsfwc8KU7Wooy4xjWSpMyXJdSaVrbvT_UVnrpuGV3lq_2aGuHDlF7O06DiuIG8uZ3WZpD1kW9sVedmpX2B3Iu_AK8GoPQHIw9hG8G9I9pyuuedXcc-CSvQlT9OW6_zD8A2KOs0Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367881574</pqid></control><display><type>article</type><title>Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots</title><source>ACS Publications</source><creator>Xiong, Wei ; Hickstein, Daniel D ; Schnitzenbaumer, Kyle J ; Ellis, Jennifer L ; Palm, Brett B ; Keister, K. Ellen ; Ding, Chengyuan ; Miaja-Avila, Luis ; Dukovic, Gordana ; Jimenez, Jose L ; Murnane, Margaret M ; Kapteyn, Henry C</creator><creatorcontrib>Xiong, Wei ; Hickstein, Daniel D ; Schnitzenbaumer, Kyle J ; Ellis, Jennifer L ; Palm, Brett B ; Keister, K. Ellen ; Ding, Chengyuan ; Miaja-Avila, Luis ; Dukovic, Gordana ; Jimenez, Jose L ; Murnane, Margaret M ; Kapteyn, Henry C ; Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><description>We present the first photoelectron spectroscopy measurements of quantum dots (semiconductor nanocrystals) in the gas phase. By coupling a nanoparticle aerosol source to a femtosecond velocity map imaging photoelectron spectrometer, we apply robust gas-phase photoelectron spectroscopy techniques to colloidal quantum dots, which typically must be studied in a liquid solvent or while bound to a surface. Working with a flowing aerosol of quantum dots offers the additional advantages of providing fresh nanoparticles for each laser shot and removing perturbations from bonding with a surface or interactions with the solvent. In this work, we perform a two-photon photoionization experiment to show that the photoelectron yield per exciton depends on the physical size of the quantum dot, increasing for smaller dots. Next, using effective mass modeling we show that the extent to which the electron wave function of the exciton extends from the quantum dot, the so-called “evanescent electron wavefunction”, increases as the size of the quantum dot decreases. We show that the photoelectron yield is dominated by the evanescent electron density due to quantum confinement effects, the difference in the density of states inside and outside of the quantum dots, and the angle-dependent transmission probability of electrons through the surface of the quantum dot. Therefore, the photoelectron yield directly reflects the fraction of evanescent electron wave function that extends outside of the quantum dot. This work shows that gas-phase photoelectron spectroscopy is a robust and general probe of the electronic structure of quantum dots, enabling the first direct measurements of the evanescent exciton wave function.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl401309z</identifier><identifier>PMID: 23688290</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>aerodynamic lens ; Aerosols ; Applied sciences ; ATOMIC AND MOLECULAR PHYSICS ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electron and ion emission by liquids and solids; impact phenomena ; electron density ; electronic structure ; Electronics ; Exact sciences and technology ; excitons ; gas phase ; Interfaces, heterostructures, nanostructures ; Materials science ; Molecular electronics, nanoelectronics ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Photoelectron spectroscopy ; Photoelectrons ; photoemission ; Photoemission and photoelectron spectra ; Physics ; Quantum dots ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Solvents ; ultrafast ; velocity map imaging ; wave function ; Wave functions</subject><ispartof>Nano letters, 2013-06, Vol.13 (6), p.2924-2930</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-52613aac8ff4cf575ddf9edc327be7ea0dc02429bd1a3e292fb9b4b0a91ab9943</citedby><cites>FETCH-LOGICAL-a440t-52613aac8ff4cf575ddf9edc327be7ea0dc02429bd1a3e292fb9b4b0a91ab9943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl401309z$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl401309z$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27517158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23688290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1691493$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Hickstein, Daniel D</creatorcontrib><creatorcontrib>Schnitzenbaumer, Kyle J</creatorcontrib><creatorcontrib>Ellis, Jennifer L</creatorcontrib><creatorcontrib>Palm, Brett B</creatorcontrib><creatorcontrib>Keister, K. Ellen</creatorcontrib><creatorcontrib>Ding, Chengyuan</creatorcontrib><creatorcontrib>Miaja-Avila, Luis</creatorcontrib><creatorcontrib>Dukovic, Gordana</creatorcontrib><creatorcontrib>Jimenez, Jose L</creatorcontrib><creatorcontrib>Murnane, Margaret M</creatorcontrib><creatorcontrib>Kapteyn, Henry C</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><title>Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We present the first photoelectron spectroscopy measurements of quantum dots (semiconductor nanocrystals) in the gas phase. By coupling a nanoparticle aerosol source to a femtosecond velocity map imaging photoelectron spectrometer, we apply robust gas-phase photoelectron spectroscopy techniques to colloidal quantum dots, which typically must be studied in a liquid solvent or while bound to a surface. Working with a flowing aerosol of quantum dots offers the additional advantages of providing fresh nanoparticles for each laser shot and removing perturbations from bonding with a surface or interactions with the solvent. In this work, we perform a two-photon photoionization experiment to show that the photoelectron yield per exciton depends on the physical size of the quantum dot, increasing for smaller dots. Next, using effective mass modeling we show that the extent to which the electron wave function of the exciton extends from the quantum dot, the so-called “evanescent electron wavefunction”, increases as the size of the quantum dot decreases. We show that the photoelectron yield is dominated by the evanescent electron density due to quantum confinement effects, the difference in the density of states inside and outside of the quantum dots, and the angle-dependent transmission probability of electrons through the surface of the quantum dot. Therefore, the photoelectron yield directly reflects the fraction of evanescent electron wave function that extends outside of the quantum dot. This work shows that gas-phase photoelectron spectroscopy is a robust and general probe of the electronic structure of quantum dots, enabling the first direct measurements of the evanescent exciton wave function.</description><subject>aerodynamic lens</subject><subject>Aerosols</subject><subject>Applied sciences</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>electron density</subject><subject>electronic structure</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>excitons</subject><subject>gas phase</subject><subject>Interfaces, heterostructures, nanostructures</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>photoemission</subject><subject>Photoemission and photoelectron spectra</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Solvents</subject><subject>ultrafast</subject><subject>velocity map imaging</subject><subject>wave function</subject><subject>Wave functions</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNqFkc9uEzEQxi0EoqVw4AWQhYQEh4D_7XrNrUrTglSgqCCO1qx3VtlqYwfbWym8Ai-NQ9L0gsTJY-k33zczHyHPOXvLmeDv_KgYl8z8ekCOeSXZrDZGPDzUjToiT1K6YYwZWbHH5EjIummEYcfk99Uy5IAjuhyDp9frv0VyYb2hoafz7hrpZ_DBxU3KMCY6eJqXSC8g0aslJHxPT-nZEEsb_YSQpojbvi2yuAWPyaHPdHGn_wNukZ5P3uWh_Ar4dQKfpxU9Czk9JY_6YoHP9u8J-X6--Db_MLv8cvFxfno5A6VYnlWi5hLANX2vXF_pqut6g52TQreoEVjnmFDCtB0HicKIvjWtahkYDq0xSp6QlzvdkPJgkxsyuqUL3pchLa8NV0YW6PUOWsfwc8KU7Wooy4xjWSpMyXJdSaVrbvT_UVnrpuGV3lq_2aGuHDlF7O06DiuIG8uZ3WZpD1kW9sVedmpX2B3Iu_AK8GoPQHIw9hG8G9I9pyuuedXcc-CSvQlT9OW6_zD8A2KOs0Y</recordid><startdate>20130612</startdate><enddate>20130612</enddate><creator>Xiong, Wei</creator><creator>Hickstein, Daniel D</creator><creator>Schnitzenbaumer, Kyle J</creator><creator>Ellis, Jennifer L</creator><creator>Palm, Brett B</creator><creator>Keister, K. Ellen</creator><creator>Ding, Chengyuan</creator><creator>Miaja-Avila, Luis</creator><creator>Dukovic, Gordana</creator><creator>Jimenez, Jose L</creator><creator>Murnane, Margaret M</creator><creator>Kapteyn, Henry C</creator><general>American Chemical Society</general><scope>N~.</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20130612</creationdate><title>Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots</title><author>Xiong, Wei ; Hickstein, Daniel D ; Schnitzenbaumer, Kyle J ; Ellis, Jennifer L ; Palm, Brett B ; Keister, K. Ellen ; Ding, Chengyuan ; Miaja-Avila, Luis ; Dukovic, Gordana ; Jimenez, Jose L ; Murnane, Margaret M ; Kapteyn, Henry C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-52613aac8ff4cf575ddf9edc327be7ea0dc02429bd1a3e292fb9b4b0a91ab9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>aerodynamic lens</topic><topic>Aerosols</topic><topic>Applied sciences</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>electron density</topic><topic>electronic structure</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>excitons</topic><topic>gas phase</topic><topic>Interfaces, heterostructures, nanostructures</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>photoemission</topic><topic>Photoemission and photoelectron spectra</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Solvents</topic><topic>ultrafast</topic><topic>velocity map imaging</topic><topic>wave function</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Hickstein, Daniel D</creatorcontrib><creatorcontrib>Schnitzenbaumer, Kyle J</creatorcontrib><creatorcontrib>Ellis, Jennifer L</creatorcontrib><creatorcontrib>Palm, Brett B</creatorcontrib><creatorcontrib>Keister, K. Ellen</creatorcontrib><creatorcontrib>Ding, Chengyuan</creatorcontrib><creatorcontrib>Miaja-Avila, Luis</creatorcontrib><creatorcontrib>Dukovic, Gordana</creatorcontrib><creatorcontrib>Jimenez, Jose L</creatorcontrib><creatorcontrib>Murnane, Margaret M</creatorcontrib><creatorcontrib>Kapteyn, Henry C</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Wei</au><au>Hickstein, Daniel D</au><au>Schnitzenbaumer, Kyle J</au><au>Ellis, Jennifer L</au><au>Palm, Brett B</au><au>Keister, K. Ellen</au><au>Ding, Chengyuan</au><au>Miaja-Avila, Luis</au><au>Dukovic, Gordana</au><au>Jimenez, Jose L</au><au>Murnane, Margaret M</au><au>Kapteyn, Henry C</au><aucorp>Univ. of Colorado, Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-06-12</date><risdate>2013</risdate><volume>13</volume><issue>6</issue><spage>2924</spage><epage>2930</epage><pages>2924-2930</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We present the first photoelectron spectroscopy measurements of quantum dots (semiconductor nanocrystals) in the gas phase. By coupling a nanoparticle aerosol source to a femtosecond velocity map imaging photoelectron spectrometer, we apply robust gas-phase photoelectron spectroscopy techniques to colloidal quantum dots, which typically must be studied in a liquid solvent or while bound to a surface. Working with a flowing aerosol of quantum dots offers the additional advantages of providing fresh nanoparticles for each laser shot and removing perturbations from bonding with a surface or interactions with the solvent. In this work, we perform a two-photon photoionization experiment to show that the photoelectron yield per exciton depends on the physical size of the quantum dot, increasing for smaller dots. Next, using effective mass modeling we show that the extent to which the electron wave function of the exciton extends from the quantum dot, the so-called “evanescent electron wavefunction”, increases as the size of the quantum dot decreases. We show that the photoelectron yield is dominated by the evanescent electron density due to quantum confinement effects, the difference in the density of states inside and outside of the quantum dots, and the angle-dependent transmission probability of electrons through the surface of the quantum dot. Therefore, the photoelectron yield directly reflects the fraction of evanescent electron wave function that extends outside of the quantum dot. This work shows that gas-phase photoelectron spectroscopy is a robust and general probe of the electronic structure of quantum dots, enabling the first direct measurements of the evanescent exciton wave function.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23688290</pmid><doi>10.1021/nl401309z</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2013-06, Vol.13 (6), p.2924-2930 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1691493 |
source | ACS Publications |
subjects | aerodynamic lens Aerosols Applied sciences ATOMIC AND MOLECULAR PHYSICS Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electron and ion emission by liquids and solids impact phenomena electron density electronic structure Electronics Exact sciences and technology excitons gas phase Interfaces, heterostructures, nanostructures Materials science Molecular electronics, nanoelectronics Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Photoelectron spectroscopy Photoelectrons photoemission Photoemission and photoelectron spectra Physics Quantum dots Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Solvents ultrafast velocity map imaging wave function Wave functions |
title | Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectron%20Spectroscopy%20of%20CdSe%20Nanocrystals%20in%20the%20Gas%20Phase:%20A%20Direct%20Measure%20of%20the%20Evanescent%20Electron%20Wave%20Function%20of%20Quantum%20Dots&rft.jtitle=Nano%20letters&rft.au=Xiong,%20Wei&rft.aucorp=Univ.%20of%20Colorado,%20Boulder,%20CO%20(United%20States)&rft.date=2013-06-12&rft.volume=13&rft.issue=6&rft.spage=2924&rft.epage=2930&rft.pages=2924-2930&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl401309z&rft_dat=%3Cproquest_osti_%3E1753476197%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367881574&rft_id=info:pmid/23688290&rfr_iscdi=true |