LyaCoLoRe : synthetic datasets for current and future Lyman-α forest BAO surveys
The statistical power of Lyman-α forest Baryon Acoustic Oscillation (BAO) measurements is set to increase significantly in the coming years as new instruments such as the Dark Energy Spectroscopic Instrument deliver progressively more constraining data. Generating mock datasets for such measurements...
Gespeichert in:
Veröffentlicht in: | Journal of cosmology and astroparticle physics 2020-03, Vol.2020 (3), p.68-68 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 3 |
container_start_page | 68 |
container_title | Journal of cosmology and astroparticle physics |
container_volume | 2020 |
creator | Farr, James Font-Ribera, Andreu Bourboux, Hélion du Mas des Muñoz-Gutiérrez, Andrea Sánchez, F. Javier Pontzen, Andrew González-Morales, Alma Xochitl Alonso, David Brooks, David Doel, Peter Etourneau, Thomas Guy, Julien Goff, Jean-Marc Le Macorra, Axel de la Palanque-Delabrouille, Nathalie Pérez-Ràfols, Ignasi Rich, James Slosar, Anže Tarle, Gregory Yutong, Duan Zhang, Kai |
description | The statistical power of Lyman-α forest Baryon Acoustic Oscillation (BAO) measurements is set to increase significantly in the coming years as new instruments such as the Dark Energy Spectroscopic Instrument deliver progressively more constraining data. Generating mock datasets for such measurements will be important for validating analysis pipelines and evaluating the effects of systematics. With such studies in mind, we present LyaCoLoRe: a package for producing synthetic Lyman-α forest survey datasets for BAO analyses. LyaCoLoRe transforms initial Gaussian random field skewers into skewers of transmitted flux fraction via a number of fast approximations. In this work we explain the methods of producing mock datasets used in LyaCoLoRe, and then measure correlation functions on a suite of realisations of such data. We demonstrate that we are able to recover the correct BAO signal, as well as large-scale bias parameters similar to literature values. Finally, we briefly describe methods to add further astrophysical effects to our skewers—high column density systems and metal absorbers—which act as potential complications for BAO analyses. |
doi_str_mv | 10.1088/1475-7516/2020/03/068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1682234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384571905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-95114dee27cefeb755b4fe32e37eead2281c305a61d062b83a1a8515f119b8a53</originalsourceid><addsrcrecordid>eNpNkd1Kw0AQhRdRsFYfQVj0yovY_ckmG-9qUSsEiqLXy2YzoSlttu5uCnksX8RnMiFSvJrhzMcZZg5C15TcUyLljMapiFJBkxkjjMwIn5FEnqDJUT_915-jC-83hLCEczlBb3mnFza374AfsO-asIZQG1zqoD0EjyvrsGmdgyZg3ZS4akPrAOfdTjfRz_cwBx_w43yFfesO0PlLdFbprYervzpFn89PH4tllK9eXhfzPDJcZiHKBKVxCcBSAxUUqRBFXAFnwFMAXTImqeFE6ISWJGGF5JpqKaioKM0KqQWfopvR1_pQK2_qAGZtbNOACYomkjEe99DdCK31Vu1dvdOuU1bXajnP1aARFnOWCH6gPXs7sntnv9r-KrWxrWv6GxTjMhYpzciwVoyUcdZ7B9XRlhI1xKGGV6vh1WqIQxGu-jj4L9yCe-I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384571905</pqid></control><display><type>article</type><title>LyaCoLoRe : synthetic datasets for current and future Lyman-α forest BAO surveys</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Farr, James ; Font-Ribera, Andreu ; Bourboux, Hélion du Mas des ; Muñoz-Gutiérrez, Andrea ; Sánchez, F. Javier ; Pontzen, Andrew ; González-Morales, Alma Xochitl ; Alonso, David ; Brooks, David ; Doel, Peter ; Etourneau, Thomas ; Guy, Julien ; Goff, Jean-Marc Le ; Macorra, Axel de la ; Palanque-Delabrouille, Nathalie ; Pérez-Ràfols, Ignasi ; Rich, James ; Slosar, Anže ; Tarle, Gregory ; Yutong, Duan ; Zhang, Kai</creator><creatorcontrib>Farr, James ; Font-Ribera, Andreu ; Bourboux, Hélion du Mas des ; Muñoz-Gutiérrez, Andrea ; Sánchez, F. Javier ; Pontzen, Andrew ; González-Morales, Alma Xochitl ; Alonso, David ; Brooks, David ; Doel, Peter ; Etourneau, Thomas ; Guy, Julien ; Goff, Jean-Marc Le ; Macorra, Axel de la ; Palanque-Delabrouille, Nathalie ; Pérez-Ràfols, Ignasi ; Rich, James ; Slosar, Anže ; Tarle, Gregory ; Yutong, Duan ; Zhang, Kai ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><description>The statistical power of Lyman-α forest Baryon Acoustic Oscillation (BAO) measurements is set to increase significantly in the coming years as new instruments such as the Dark Energy Spectroscopic Instrument deliver progressively more constraining data. Generating mock datasets for such measurements will be important for validating analysis pipelines and evaluating the effects of systematics. With such studies in mind, we present LyaCoLoRe: a package for producing synthetic Lyman-α forest survey datasets for BAO analyses. LyaCoLoRe transforms initial Gaussian random field skewers into skewers of transmitted flux fraction via a number of fast approximations. In this work we explain the methods of producing mock datasets used in LyaCoLoRe, and then measure correlation functions on a suite of realisations of such data. We demonstrate that we are able to recover the correct BAO signal, as well as large-scale bias parameters similar to literature values. Finally, we briefly describe methods to add further astrophysical effects to our skewers—high column density systems and metal absorbers—which act as potential complications for BAO analyses.</description><identifier>ISSN: 1475-7516</identifier><identifier>ISSN: 1475-7508</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2020/03/068</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Approximation ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; baryon acoustic oscillations ; Complications ; Correlation analysis ; cosmology ; Dark energy ; Datasets ; Fields (mathematics) ; Lyman alpha forest ; Physics ; Polls & surveys ; Production methods ; Synthetic data ; Systematics</subject><ispartof>Journal of cosmology and astroparticle physics, 2020-03, Vol.2020 (3), p.68-68</ispartof><rights>Copyright IOP Publishing Mar 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-95114dee27cefeb755b4fe32e37eead2281c305a61d062b83a1a8515f119b8a53</citedby><cites>FETCH-LOGICAL-c389t-95114dee27cefeb755b4fe32e37eead2281c305a61d062b83a1a8515f119b8a53</cites><orcidid>0000-0002-0068-8197 ; 0000-0002-6758-2186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02432653$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1682234$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Farr, James</creatorcontrib><creatorcontrib>Font-Ribera, Andreu</creatorcontrib><creatorcontrib>Bourboux, Hélion du Mas des</creatorcontrib><creatorcontrib>Muñoz-Gutiérrez, Andrea</creatorcontrib><creatorcontrib>Sánchez, F. Javier</creatorcontrib><creatorcontrib>Pontzen, Andrew</creatorcontrib><creatorcontrib>González-Morales, Alma Xochitl</creatorcontrib><creatorcontrib>Alonso, David</creatorcontrib><creatorcontrib>Brooks, David</creatorcontrib><creatorcontrib>Doel, Peter</creatorcontrib><creatorcontrib>Etourneau, Thomas</creatorcontrib><creatorcontrib>Guy, Julien</creatorcontrib><creatorcontrib>Goff, Jean-Marc Le</creatorcontrib><creatorcontrib>Macorra, Axel de la</creatorcontrib><creatorcontrib>Palanque-Delabrouille, Nathalie</creatorcontrib><creatorcontrib>Pérez-Ràfols, Ignasi</creatorcontrib><creatorcontrib>Rich, James</creatorcontrib><creatorcontrib>Slosar, Anže</creatorcontrib><creatorcontrib>Tarle, Gregory</creatorcontrib><creatorcontrib>Yutong, Duan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><title>LyaCoLoRe : synthetic datasets for current and future Lyman-α forest BAO surveys</title><title>Journal of cosmology and astroparticle physics</title><description>The statistical power of Lyman-α forest Baryon Acoustic Oscillation (BAO) measurements is set to increase significantly in the coming years as new instruments such as the Dark Energy Spectroscopic Instrument deliver progressively more constraining data. Generating mock datasets for such measurements will be important for validating analysis pipelines and evaluating the effects of systematics. With such studies in mind, we present LyaCoLoRe: a package for producing synthetic Lyman-α forest survey datasets for BAO analyses. LyaCoLoRe transforms initial Gaussian random field skewers into skewers of transmitted flux fraction via a number of fast approximations. In this work we explain the methods of producing mock datasets used in LyaCoLoRe, and then measure correlation functions on a suite of realisations of such data. We demonstrate that we are able to recover the correct BAO signal, as well as large-scale bias parameters similar to literature values. Finally, we briefly describe methods to add further astrophysical effects to our skewers—high column density systems and metal absorbers—which act as potential complications for BAO analyses.</description><subject>Approximation</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>baryon acoustic oscillations</subject><subject>Complications</subject><subject>Correlation analysis</subject><subject>cosmology</subject><subject>Dark energy</subject><subject>Datasets</subject><subject>Fields (mathematics)</subject><subject>Lyman alpha forest</subject><subject>Physics</subject><subject>Polls & surveys</subject><subject>Production methods</subject><subject>Synthetic data</subject><subject>Systematics</subject><issn>1475-7516</issn><issn>1475-7508</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkd1Kw0AQhRdRsFYfQVj0yovY_ckmG-9qUSsEiqLXy2YzoSlttu5uCnksX8RnMiFSvJrhzMcZZg5C15TcUyLljMapiFJBkxkjjMwIn5FEnqDJUT_915-jC-83hLCEczlBb3mnFza374AfsO-asIZQG1zqoD0EjyvrsGmdgyZg3ZS4akPrAOfdTjfRz_cwBx_w43yFfesO0PlLdFbprYervzpFn89PH4tllK9eXhfzPDJcZiHKBKVxCcBSAxUUqRBFXAFnwFMAXTImqeFE6ISWJGGF5JpqKaioKM0KqQWfopvR1_pQK2_qAGZtbNOACYomkjEe99DdCK31Vu1dvdOuU1bXajnP1aARFnOWCH6gPXs7sntnv9r-KrWxrWv6GxTjMhYpzciwVoyUcdZ7B9XRlhI1xKGGV6vh1WqIQxGu-jj4L9yCe-I</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Farr, James</creator><creator>Font-Ribera, Andreu</creator><creator>Bourboux, Hélion du Mas des</creator><creator>Muñoz-Gutiérrez, Andrea</creator><creator>Sánchez, F. Javier</creator><creator>Pontzen, Andrew</creator><creator>González-Morales, Alma Xochitl</creator><creator>Alonso, David</creator><creator>Brooks, David</creator><creator>Doel, Peter</creator><creator>Etourneau, Thomas</creator><creator>Guy, Julien</creator><creator>Goff, Jean-Marc Le</creator><creator>Macorra, Axel de la</creator><creator>Palanque-Delabrouille, Nathalie</creator><creator>Pérez-Ràfols, Ignasi</creator><creator>Rich, James</creator><creator>Slosar, Anže</creator><creator>Tarle, Gregory</creator><creator>Yutong, Duan</creator><creator>Zhang, Kai</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0068-8197</orcidid><orcidid>https://orcid.org/0000-0002-6758-2186</orcidid></search><sort><creationdate>20200301</creationdate><title>LyaCoLoRe : synthetic datasets for current and future Lyman-α forest BAO surveys</title><author>Farr, James ; Font-Ribera, Andreu ; Bourboux, Hélion du Mas des ; Muñoz-Gutiérrez, Andrea ; Sánchez, F. Javier ; Pontzen, Andrew ; González-Morales, Alma Xochitl ; Alonso, David ; Brooks, David ; Doel, Peter ; Etourneau, Thomas ; Guy, Julien ; Goff, Jean-Marc Le ; Macorra, Axel de la ; Palanque-Delabrouille, Nathalie ; Pérez-Ràfols, Ignasi ; Rich, James ; Slosar, Anže ; Tarle, Gregory ; Yutong, Duan ; Zhang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-95114dee27cefeb755b4fe32e37eead2281c305a61d062b83a1a8515f119b8a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>baryon acoustic oscillations</topic><topic>Complications</topic><topic>Correlation analysis</topic><topic>cosmology</topic><topic>Dark energy</topic><topic>Datasets</topic><topic>Fields (mathematics)</topic><topic>Lyman alpha forest</topic><topic>Physics</topic><topic>Polls & surveys</topic><topic>Production methods</topic><topic>Synthetic data</topic><topic>Systematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farr, James</creatorcontrib><creatorcontrib>Font-Ribera, Andreu</creatorcontrib><creatorcontrib>Bourboux, Hélion du Mas des</creatorcontrib><creatorcontrib>Muñoz-Gutiérrez, Andrea</creatorcontrib><creatorcontrib>Sánchez, F. Javier</creatorcontrib><creatorcontrib>Pontzen, Andrew</creatorcontrib><creatorcontrib>González-Morales, Alma Xochitl</creatorcontrib><creatorcontrib>Alonso, David</creatorcontrib><creatorcontrib>Brooks, David</creatorcontrib><creatorcontrib>Doel, Peter</creatorcontrib><creatorcontrib>Etourneau, Thomas</creatorcontrib><creatorcontrib>Guy, Julien</creatorcontrib><creatorcontrib>Goff, Jean-Marc Le</creatorcontrib><creatorcontrib>Macorra, Axel de la</creatorcontrib><creatorcontrib>Palanque-Delabrouille, Nathalie</creatorcontrib><creatorcontrib>Pérez-Ràfols, Ignasi</creatorcontrib><creatorcontrib>Rich, James</creatorcontrib><creatorcontrib>Slosar, Anže</creatorcontrib><creatorcontrib>Tarle, Gregory</creatorcontrib><creatorcontrib>Yutong, Duan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farr, James</au><au>Font-Ribera, Andreu</au><au>Bourboux, Hélion du Mas des</au><au>Muñoz-Gutiérrez, Andrea</au><au>Sánchez, F. Javier</au><au>Pontzen, Andrew</au><au>González-Morales, Alma Xochitl</au><au>Alonso, David</au><au>Brooks, David</au><au>Doel, Peter</au><au>Etourneau, Thomas</au><au>Guy, Julien</au><au>Goff, Jean-Marc Le</au><au>Macorra, Axel de la</au><au>Palanque-Delabrouille, Nathalie</au><au>Pérez-Ràfols, Ignasi</au><au>Rich, James</au><au>Slosar, Anže</au><au>Tarle, Gregory</au><au>Yutong, Duan</au><au>Zhang, Kai</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Univ. of Michigan, Ann Arbor, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LyaCoLoRe : synthetic datasets for current and future Lyman-α forest BAO surveys</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>2020</volume><issue>3</issue><spage>68</spage><epage>68</epage><pages>68-68</pages><issn>1475-7516</issn><issn>1475-7508</issn><eissn>1475-7516</eissn><abstract>The statistical power of Lyman-α forest Baryon Acoustic Oscillation (BAO) measurements is set to increase significantly in the coming years as new instruments such as the Dark Energy Spectroscopic Instrument deliver progressively more constraining data. Generating mock datasets for such measurements will be important for validating analysis pipelines and evaluating the effects of systematics. With such studies in mind, we present LyaCoLoRe: a package for producing synthetic Lyman-α forest survey datasets for BAO analyses. LyaCoLoRe transforms initial Gaussian random field skewers into skewers of transmitted flux fraction via a number of fast approximations. In this work we explain the methods of producing mock datasets used in LyaCoLoRe, and then measure correlation functions on a suite of realisations of such data. We demonstrate that we are able to recover the correct BAO signal, as well as large-scale bias parameters similar to literature values. Finally, we briefly describe methods to add further astrophysical effects to our skewers—high column density systems and metal absorbers—which act as potential complications for BAO analyses.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2020/03/068</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0068-8197</orcidid><orcidid>https://orcid.org/0000-0002-6758-2186</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-7516 |
ispartof | Journal of cosmology and astroparticle physics, 2020-03, Vol.2020 (3), p.68-68 |
issn | 1475-7516 1475-7508 1475-7516 |
language | eng |
recordid | cdi_osti_scitechconnect_1682234 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Approximation ASTRONOMY AND ASTROPHYSICS Astrophysics baryon acoustic oscillations Complications Correlation analysis cosmology Dark energy Datasets Fields (mathematics) Lyman alpha forest Physics Polls & surveys Production methods Synthetic data Systematics |
title | LyaCoLoRe : synthetic datasets for current and future Lyman-α forest BAO surveys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LyaCoLoRe%20:%20synthetic%20datasets%20for%20current%20and%20future%20Lyman-%CE%B1%20forest%20BAO%20surveys&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Farr,%20James&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-03-01&rft.volume=2020&rft.issue=3&rft.spage=68&rft.epage=68&rft.pages=68-68&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2020/03/068&rft_dat=%3Cproquest_osti_%3E2384571905%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384571905&rft_id=info:pmid/&rfr_iscdi=true |