Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage

We explore the kinetic processes that sustain equilibrium in a microscopic, finite system. This is accomplished by monitoring the spontaneous, time-dependent frequency evolution (the frequency autocorrelation) of a single OH oscillator, embedded in a water cluster held in a temperature-controlled io...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-10, Vol.117 (42)
Hauptverfasser: Yang, Nan, Edington, Sean C., Choi, Tae Hoon, Henderson, Elva V., Heindel, Joseph P., Xantheas, Sotiris S., Jordan, Kenneth D., Johnson, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 42
container_start_page
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Yang, Nan
Edington, Sean C.
Choi, Tae Hoon
Henderson, Elva V.
Heindel, Joseph P.
Xantheas, Sotiris S.
Jordan, Kenneth D.
Johnson, Mark A.
description We explore the kinetic processes that sustain equilibrium in a microscopic, finite system. This is accomplished by monitoring the spontaneous, time-dependent frequency evolution (the frequency autocorrelation) of a single OH oscillator, embedded in a water cluster held in a temperature-controlled ion trap. The measurements are carried out by applying two-color, infrared-infrared photodissociation mass spectrometry to the D 3 O + ·(HDO)(D 2 O) 19 isotopologue of the “magic number” protonated water cluster, H + ·(H 2 O) 21 . The OH group can occupy any one of the five spectroscopically distinct sites in the distorted pentagonal dodecahedron cage structure. The OH frequency is observed to evolve over tens of milliseconds in the temperature range (90 to 120 K). Starting at 100 K, large “jumps” are observed between two OH frequencies separated by ∼300 cm −1 , indicating migration of the OH group from the bound OH site at 3,350 cm −1 to the free position at 3,686 cm −1 . Increasing the temperature to 110 K leads to partial interconversion among many sites. All sites are observed to interconvert at 120 K such that the distribution of the unique OH group among them adopts the form one would expect for a canonical ensemble. The spectral dynamics displayed by the clusters thus offer an unprecedented view into the molecular-level processes that drive spectral diffusion in an extended network of water molecules.
doi_str_mv 10.1073/pnas.2017150117
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1679950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1679950</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16799503</originalsourceid><addsrcrecordid>eNqNjT1PwzAQhi1EJcLHzHpiTzmnSdPMCMTCxl6dnHPrEmzLd1E3fjttxQ9geqRXj57XmEeLS4v96jlHkmWDtrcdWttfmcriYOt1O-C1qRCbvt60TXtjbkUOiDh0G6zMzwflHOIOdM-g_J25kM6F65Ezx5GjAsURIusxlS-QoFxLZhd8cJCisELycF600ARj8H6WkCKQXpIyF0-OzxLBkZQLuGmWC2nH92bhaRJ--OOdeXp7_Xx5r5No2Io73bm9SzGe-lu77oehw9W_pF9JNldK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Nan ; Edington, Sean C. ; Choi, Tae Hoon ; Henderson, Elva V. ; Heindel, Joseph P. ; Xantheas, Sotiris S. ; Jordan, Kenneth D. ; Johnson, Mark A.</creator><creatorcontrib>Yang, Nan ; Edington, Sean C. ; Choi, Tae Hoon ; Henderson, Elva V. ; Heindel, Joseph P. ; Xantheas, Sotiris S. ; Jordan, Kenneth D. ; Johnson, Mark A. ; Yale Yale Univ., New Haven, CT (United States) ; Yale Univ., New Haven, CT (United States)</creatorcontrib><description>We explore the kinetic processes that sustain equilibrium in a microscopic, finite system. This is accomplished by monitoring the spontaneous, time-dependent frequency evolution (the frequency autocorrelation) of a single OH oscillator, embedded in a water cluster held in a temperature-controlled ion trap. The measurements are carried out by applying two-color, infrared-infrared photodissociation mass spectrometry to the D 3 O + ·(HDO)(D 2 O) 19 isotopologue of the “magic number” protonated water cluster, H + ·(H 2 O) 21 . The OH group can occupy any one of the five spectroscopically distinct sites in the distorted pentagonal dodecahedron cage structure. The OH frequency is observed to evolve over tens of milliseconds in the temperature range (90 to 120 K). Starting at 100 K, large “jumps” are observed between two OH frequencies separated by ∼300 cm −1 , indicating migration of the OH group from the bound OH site at 3,350 cm −1 to the free position at 3,686 cm −1 . Increasing the temperature to 110 K leads to partial interconversion among many sites. All sites are observed to interconvert at 120 K such that the distribution of the unique OH group among them adopts the form one would expect for a canonical ensemble. The spectral dynamics displayed by the clusters thus offer an unprecedented view into the molecular-level processes that drive spectral diffusion in an extended network of water molecules.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2017150117</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; large-amplitude motion ; reaction kinetics ; spectral diffusion ; water ; water cluster</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (42)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000312532154 ; 0000000258948801 ; 0000000214926993 ; 0000000263031037 ; 000000032576312X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1679950$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Edington, Sean C.</creatorcontrib><creatorcontrib>Choi, Tae Hoon</creatorcontrib><creatorcontrib>Henderson, Elva V.</creatorcontrib><creatorcontrib>Heindel, Joseph P.</creatorcontrib><creatorcontrib>Xantheas, Sotiris S.</creatorcontrib><creatorcontrib>Jordan, Kenneth D.</creatorcontrib><creatorcontrib>Johnson, Mark A.</creatorcontrib><creatorcontrib>Yale Yale Univ., New Haven, CT (United States)</creatorcontrib><creatorcontrib>Yale Univ., New Haven, CT (United States)</creatorcontrib><title>Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>We explore the kinetic processes that sustain equilibrium in a microscopic, finite system. This is accomplished by monitoring the spontaneous, time-dependent frequency evolution (the frequency autocorrelation) of a single OH oscillator, embedded in a water cluster held in a temperature-controlled ion trap. The measurements are carried out by applying two-color, infrared-infrared photodissociation mass spectrometry to the D 3 O + ·(HDO)(D 2 O) 19 isotopologue of the “magic number” protonated water cluster, H + ·(H 2 O) 21 . The OH group can occupy any one of the five spectroscopically distinct sites in the distorted pentagonal dodecahedron cage structure. The OH frequency is observed to evolve over tens of milliseconds in the temperature range (90 to 120 K). Starting at 100 K, large “jumps” are observed between two OH frequencies separated by ∼300 cm −1 , indicating migration of the OH group from the bound OH site at 3,350 cm −1 to the free position at 3,686 cm −1 . Increasing the temperature to 110 K leads to partial interconversion among many sites. All sites are observed to interconvert at 120 K such that the distribution of the unique OH group among them adopts the form one would expect for a canonical ensemble. The spectral dynamics displayed by the clusters thus offer an unprecedented view into the molecular-level processes that drive spectral diffusion in an extended network of water molecules.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>large-amplitude motion</subject><subject>reaction kinetics</subject><subject>spectral diffusion</subject><subject>water</subject><subject>water cluster</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjT1PwzAQhi1EJcLHzHpiTzmnSdPMCMTCxl6dnHPrEmzLd1E3fjttxQ9geqRXj57XmEeLS4v96jlHkmWDtrcdWttfmcriYOt1O-C1qRCbvt60TXtjbkUOiDh0G6zMzwflHOIOdM-g_J25kM6F65Ezx5GjAsURIusxlS-QoFxLZhd8cJCisELycF600ARj8H6WkCKQXpIyF0-OzxLBkZQLuGmWC2nH92bhaRJ--OOdeXp7_Xx5r5No2Io73bm9SzGe-lu77oehw9W_pF9JNldK</recordid><startdate>20201006</startdate><enddate>20201006</enddate><creator>Yang, Nan</creator><creator>Edington, Sean C.</creator><creator>Choi, Tae Hoon</creator><creator>Henderson, Elva V.</creator><creator>Heindel, Joseph P.</creator><creator>Xantheas, Sotiris S.</creator><creator>Jordan, Kenneth D.</creator><creator>Johnson, Mark A.</creator><general>National Academy of Sciences</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000312532154</orcidid><orcidid>https://orcid.org/0000000258948801</orcidid><orcidid>https://orcid.org/0000000214926993</orcidid><orcidid>https://orcid.org/0000000263031037</orcidid><orcidid>https://orcid.org/000000032576312X</orcidid></search><sort><creationdate>20201006</creationdate><title>Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage</title><author>Yang, Nan ; Edington, Sean C. ; Choi, Tae Hoon ; Henderson, Elva V. ; Heindel, Joseph P. ; Xantheas, Sotiris S. ; Jordan, Kenneth D. ; Johnson, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16799503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>large-amplitude motion</topic><topic>reaction kinetics</topic><topic>spectral diffusion</topic><topic>water</topic><topic>water cluster</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Edington, Sean C.</creatorcontrib><creatorcontrib>Choi, Tae Hoon</creatorcontrib><creatorcontrib>Henderson, Elva V.</creatorcontrib><creatorcontrib>Heindel, Joseph P.</creatorcontrib><creatorcontrib>Xantheas, Sotiris S.</creatorcontrib><creatorcontrib>Jordan, Kenneth D.</creatorcontrib><creatorcontrib>Johnson, Mark A.</creatorcontrib><creatorcontrib>Yale Yale Univ., New Haven, CT (United States)</creatorcontrib><creatorcontrib>Yale Univ., New Haven, CT (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Nan</au><au>Edington, Sean C.</au><au>Choi, Tae Hoon</au><au>Henderson, Elva V.</au><au>Heindel, Joseph P.</au><au>Xantheas, Sotiris S.</au><au>Jordan, Kenneth D.</au><au>Johnson, Mark A.</au><aucorp>Yale Yale Univ., New Haven, CT (United States)</aucorp><aucorp>Yale Univ., New Haven, CT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-10-06</date><risdate>2020</risdate><volume>117</volume><issue>42</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We explore the kinetic processes that sustain equilibrium in a microscopic, finite system. This is accomplished by monitoring the spontaneous, time-dependent frequency evolution (the frequency autocorrelation) of a single OH oscillator, embedded in a water cluster held in a temperature-controlled ion trap. The measurements are carried out by applying two-color, infrared-infrared photodissociation mass spectrometry to the D 3 O + ·(HDO)(D 2 O) 19 isotopologue of the “magic number” protonated water cluster, H + ·(H 2 O) 21 . The OH group can occupy any one of the five spectroscopically distinct sites in the distorted pentagonal dodecahedron cage structure. The OH frequency is observed to evolve over tens of milliseconds in the temperature range (90 to 120 K). Starting at 100 K, large “jumps” are observed between two OH frequencies separated by ∼300 cm −1 , indicating migration of the OH group from the bound OH site at 3,350 cm −1 to the free position at 3,686 cm −1 . Increasing the temperature to 110 K leads to partial interconversion among many sites. All sites are observed to interconvert at 120 K such that the distribution of the unique OH group among them adopts the form one would expect for a canonical ensemble. The spectral dynamics displayed by the clusters thus offer an unprecedented view into the molecular-level processes that drive spectral diffusion in an extended network of water molecules.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.2017150117</doi><orcidid>https://orcid.org/0000000312532154</orcidid><orcidid>https://orcid.org/0000000258948801</orcidid><orcidid>https://orcid.org/0000000214926993</orcidid><orcidid>https://orcid.org/0000000263031037</orcidid><orcidid>https://orcid.org/000000032576312X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (42)
issn 0027-8424
1091-6490
language eng
recordid cdi_osti_scitechconnect_1679950
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
large-amplitude motion
reaction kinetics
spectral diffusion
water
water cluster
title Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20temperature-dependent%20and%20network%20site-specific%20onset%20of%20spectral%20diffusion%20at%20the%20surface%20of%20a%20water%20cluster%20cage&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Nan&rft.aucorp=Yale%20Yale%20Univ.,%20New%20Haven,%20CT%20(United%20States)&rft.date=2020-10-06&rft.volume=117&rft.issue=42&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2017150117&rft_dat=%3Costi%3E1679950%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true