Phase Change-Driven Negative Activation Energies in Pd/Carbon-Based/Organic Getter Hydrogenation Reactions

The hydrogenation of 1,4-diphenylbutadiyne (DPB) blended with carbon-supported Pd (DPB–Pd/C) in the form of pellets was investigated by isothermal–isobaric experiments at 1333 Pa of H2 and in the temperature range of 291–315 K. The extracted kinetics were then used in conjunction with a complementar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-10, Vol.124 (41), p.8390-8397
Hauptverfasser: Dinh, Long N, Sharma, Hom N, Matt, Sarah M, McLean, William, Maxwell, Robert S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8397
container_issue 41
container_start_page 8390
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 124
creator Dinh, Long N
Sharma, Hom N
Matt, Sarah M
McLean, William
Maxwell, Robert S
description The hydrogenation of 1,4-diphenylbutadiyne (DPB) blended with carbon-supported Pd (DPB–Pd/C) in the form of pellets was investigated by isothermal–isobaric experiments at 1333 Pa of H2 and in the temperature range of 291–315 K. The extracted kinetics were then used in conjunction with a complementary constant rate of H2 input experimentation to model the performance of a DPB-catalysis/support system as a function of temperature and H2 partial pressure. First-principles density functional theory (DFT) calculations were also performed to shed light on the molecular level energetics of DPB and its intermediate states. A seemingly puzzling formation of alternate positive activation energy barrier (higher reaction rate with higher temperature) and negative activation energy barrier (higher reaction rate with lower temperature) zones during the hydrogenation process was discovered. However, this observed phenomenon can be logically explained in terms of the associated phase changes and H2 transport in the material. This work provides a good illustration of a rarely encountered chemical process with a negative activation energy barrier.
doi_str_mv 10.1021/acs.jpca.0c06556
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1673831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445975442</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-d75e9eea4ada20a5822e046268ebd3d6b5fc86892c7358bf55f05b65e3f130ec3</originalsourceid><addsrcrecordid>eNp1kM9PwjAUxxejiYjePS6ePDjoj7XbjjgRTIgQo-em697GCLTYFhP-e4vj6ul9k_f5vuR9ougeoxFGBI-lcqPNXskRUogzxi-iAWYEJYxgdhkyyouEcVpcRzfObRBCmJJ0EG1Wa-kgLtdSt5C82O4HdPwOrfQhxRMVRohGx1MNtu3AxZ2OV_W4lLYyOnkO5Xq8tK3UnYpn4D3YeH6srWlB98UPkOoU3G101citg7vzHEZfr9PPcp4slrO3crJIJM2JT-qMQQEgU1lLgiTLCQGUcsJzqGpa84o1Kud5QVRGWV41jDWIVZwBbTBFoOgweujvGuc74VTnQa2V0RqUF5hnNKc4QI89tLfm-wDOi13nFGy3UoM5OEHSlBUZS1MSUNSjyhrnLDRib7udtEeBkTi5F8G9OLkXZ_eh8tRX_jbmYHV4-H_8F6lkiFc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445975442</pqid></control><display><type>article</type><title>Phase Change-Driven Negative Activation Energies in Pd/Carbon-Based/Organic Getter Hydrogenation Reactions</title><source>ACS Publications</source><creator>Dinh, Long N ; Sharma, Hom N ; Matt, Sarah M ; McLean, William ; Maxwell, Robert S</creator><creatorcontrib>Dinh, Long N ; Sharma, Hom N ; Matt, Sarah M ; McLean, William ; Maxwell, Robert S ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>The hydrogenation of 1,4-diphenylbutadiyne (DPB) blended with carbon-supported Pd (DPB–Pd/C) in the form of pellets was investigated by isothermal–isobaric experiments at 1333 Pa of H2 and in the temperature range of 291–315 K. The extracted kinetics were then used in conjunction with a complementary constant rate of H2 input experimentation to model the performance of a DPB-catalysis/support system as a function of temperature and H2 partial pressure. First-principles density functional theory (DFT) calculations were also performed to shed light on the molecular level energetics of DPB and its intermediate states. A seemingly puzzling formation of alternate positive activation energy barrier (higher reaction rate with higher temperature) and negative activation energy barrier (higher reaction rate with lower temperature) zones during the hydrogenation process was discovered. However, this observed phenomenon can be logically explained in terms of the associated phase changes and H2 transport in the material. This work provides a good illustration of a rarely encountered chemical process with a negative activation energy barrier.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c06556</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Kinetics, Dynamics, Photochemistry, and Excited States ; activation energy ; chemical reactions ; hydrogen ; hydrogenation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; molecules</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2020-10, Vol.124 (41), p.8390-8397</ispartof><rights>XXXX American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-d75e9eea4ada20a5822e046268ebd3d6b5fc86892c7358bf55f05b65e3f130ec3</citedby><cites>FETCH-LOGICAL-a382t-d75e9eea4ada20a5822e046268ebd3d6b5fc86892c7358bf55f05b65e3f130ec3</cites><orcidid>0000-0002-0380-7382 ; 0000-0002-2900-5361 ; 0000-0003-2493-525X ; 0000000229005361 ; 000000032493525X ; 0000000203807382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.0c06556$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.0c06556$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1673831$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dinh, Long N</creatorcontrib><creatorcontrib>Sharma, Hom N</creatorcontrib><creatorcontrib>Matt, Sarah M</creatorcontrib><creatorcontrib>McLean, William</creatorcontrib><creatorcontrib>Maxwell, Robert S</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Phase Change-Driven Negative Activation Energies in Pd/Carbon-Based/Organic Getter Hydrogenation Reactions</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The hydrogenation of 1,4-diphenylbutadiyne (DPB) blended with carbon-supported Pd (DPB–Pd/C) in the form of pellets was investigated by isothermal–isobaric experiments at 1333 Pa of H2 and in the temperature range of 291–315 K. The extracted kinetics were then used in conjunction with a complementary constant rate of H2 input experimentation to model the performance of a DPB-catalysis/support system as a function of temperature and H2 partial pressure. First-principles density functional theory (DFT) calculations were also performed to shed light on the molecular level energetics of DPB and its intermediate states. A seemingly puzzling formation of alternate positive activation energy barrier (higher reaction rate with higher temperature) and negative activation energy barrier (higher reaction rate with lower temperature) zones during the hydrogenation process was discovered. However, this observed phenomenon can be logically explained in terms of the associated phase changes and H2 transport in the material. This work provides a good illustration of a rarely encountered chemical process with a negative activation energy barrier.</description><subject>A: Kinetics, Dynamics, Photochemistry, and Excited States</subject><subject>activation energy</subject><subject>chemical reactions</subject><subject>hydrogen</subject><subject>hydrogenation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>molecules</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwjAUxxejiYjePS6ePDjoj7XbjjgRTIgQo-em697GCLTYFhP-e4vj6ul9k_f5vuR9ougeoxFGBI-lcqPNXskRUogzxi-iAWYEJYxgdhkyyouEcVpcRzfObRBCmJJ0EG1Wa-kgLtdSt5C82O4HdPwOrfQhxRMVRohGx1MNtu3AxZ2OV_W4lLYyOnkO5Xq8tK3UnYpn4D3YeH6srWlB98UPkOoU3G101citg7vzHEZfr9PPcp4slrO3crJIJM2JT-qMQQEgU1lLgiTLCQGUcsJzqGpa84o1Kud5QVRGWV41jDWIVZwBbTBFoOgweujvGuc74VTnQa2V0RqUF5hnNKc4QI89tLfm-wDOi13nFGy3UoM5OEHSlBUZS1MSUNSjyhrnLDRib7udtEeBkTi5F8G9OLkXZ_eh8tRX_jbmYHV4-H_8F6lkiFc</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Dinh, Long N</creator><creator>Sharma, Hom N</creator><creator>Matt, Sarah M</creator><creator>McLean, William</creator><creator>Maxwell, Robert S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0380-7382</orcidid><orcidid>https://orcid.org/0000-0002-2900-5361</orcidid><orcidid>https://orcid.org/0000-0003-2493-525X</orcidid><orcidid>https://orcid.org/0000000229005361</orcidid><orcidid>https://orcid.org/000000032493525X</orcidid><orcidid>https://orcid.org/0000000203807382</orcidid></search><sort><creationdate>20201015</creationdate><title>Phase Change-Driven Negative Activation Energies in Pd/Carbon-Based/Organic Getter Hydrogenation Reactions</title><author>Dinh, Long N ; Sharma, Hom N ; Matt, Sarah M ; McLean, William ; Maxwell, Robert S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-d75e9eea4ada20a5822e046268ebd3d6b5fc86892c7358bf55f05b65e3f130ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: Kinetics, Dynamics, Photochemistry, and Excited States</topic><topic>activation energy</topic><topic>chemical reactions</topic><topic>hydrogen</topic><topic>hydrogenation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>molecules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinh, Long N</creatorcontrib><creatorcontrib>Sharma, Hom N</creatorcontrib><creatorcontrib>Matt, Sarah M</creatorcontrib><creatorcontrib>McLean, William</creatorcontrib><creatorcontrib>Maxwell, Robert S</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, Long N</au><au>Sharma, Hom N</au><au>Matt, Sarah M</au><au>McLean, William</au><au>Maxwell, Robert S</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Change-Driven Negative Activation Energies in Pd/Carbon-Based/Organic Getter Hydrogenation Reactions</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-10-15</date><risdate>2020</risdate><volume>124</volume><issue>41</issue><spage>8390</spage><epage>8397</epage><pages>8390-8397</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The hydrogenation of 1,4-diphenylbutadiyne (DPB) blended with carbon-supported Pd (DPB–Pd/C) in the form of pellets was investigated by isothermal–isobaric experiments at 1333 Pa of H2 and in the temperature range of 291–315 K. The extracted kinetics were then used in conjunction with a complementary constant rate of H2 input experimentation to model the performance of a DPB-catalysis/support system as a function of temperature and H2 partial pressure. First-principles density functional theory (DFT) calculations were also performed to shed light on the molecular level energetics of DPB and its intermediate states. A seemingly puzzling formation of alternate positive activation energy barrier (higher reaction rate with higher temperature) and negative activation energy barrier (higher reaction rate with lower temperature) zones during the hydrogenation process was discovered. However, this observed phenomenon can be logically explained in terms of the associated phase changes and H2 transport in the material. This work provides a good illustration of a rarely encountered chemical process with a negative activation energy barrier.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.0c06556</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0380-7382</orcidid><orcidid>https://orcid.org/0000-0002-2900-5361</orcidid><orcidid>https://orcid.org/0000-0003-2493-525X</orcidid><orcidid>https://orcid.org/0000000229005361</orcidid><orcidid>https://orcid.org/000000032493525X</orcidid><orcidid>https://orcid.org/0000000203807382</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-10, Vol.124 (41), p.8390-8397
issn 1089-5639
1520-5215
language eng
recordid cdi_osti_scitechconnect_1673831
source ACS Publications
subjects A: Kinetics, Dynamics, Photochemistry, and Excited States
activation energy
chemical reactions
hydrogen
hydrogenation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
molecules
title Phase Change-Driven Negative Activation Energies in Pd/Carbon-Based/Organic Getter Hydrogenation Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Change-Driven%20Negative%20Activation%20Energies%20in%20Pd/Carbon-Based/Organic%20Getter%20Hydrogenation%20Reactions&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Dinh,%20Long%20N&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-10-15&rft.volume=124&rft.issue=41&rft.spage=8390&rft.epage=8397&rft.pages=8390-8397&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c06556&rft_dat=%3Cproquest_osti_%3E2445975442%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445975442&rft_id=info:pmid/&rfr_iscdi=true