Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS
The 3-D field induced relativistic runaway electron (RE) loss has been simulated for DIII-D and COMPASS plasmas, utilizing the MARS-F code incorporated with the recently developed and updated RE orbit module (REORBIT). Modeling shows effectively 100% loss of a post-disruption, high-current runaway b...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2020-10, Vol.27 (10) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 27 |
creator | Liu, Yueqiang Paz-Soldan, C. Macusova, E. Markovic, T. Ficker, O. Parks, P. B. Kim, C. C. Lao, L. L. Li, L. |
description | The 3-D field induced relativistic runaway electron (RE) loss has been simulated for DIII-D and COMPASS plasmas, utilizing the MARS-F code incorporated with the recently developed and updated RE orbit module (REORBIT). Modeling shows effectively 100% loss of a post-disruption, high-current runaway beam in DIII-D due to the 1 kG level of magnetic field perturbation produced by a fast growing n = 1 resistive kink instability. This complete RE loss is shown to be independent of the particle energy or the initial location of particles in the configuration space. Applied resonant magnetic perturbation (RMP) fields from in-vessel coils are not effective for RE beam mitigation in DIII-D but do produce finite (>10%) RE loss in COMPASS post-disruption plasmas, consistent with experimental observations in the above two devices. The major reasons for this difference in RE control by RMP between these two devices are (i) the coil proximity to the RE beam and (ii) the effective coil current scaling vs the machine size and the toroidal magnetic field. In the modeling, the lost REs due to 3-D fields deposit onto the limiting surfaces of the devices. Distributions of the lost REs to the limiting surface show a poloidally peaked profile near the high-field-side in both DIII-D and COMPASS, covering about
100
° poloidal angle. A higher perturbation field level and/or higher particle energy also result in REs being lost to the low-field-side of the limiting surface of these two devices, increasing the effective wetted area. |
doi_str_mv | 10.1063/5.0021154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1671157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449323878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-839e4b0391b3b380ee9eacadb9a067ec8104e65e5f29d4efb8d5ca1992eb6e003</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAiCl4XvkHQlUI1adI0WcqMl4KieAF3IU1OtUMnGZNWmbe3QwddCK5yCB_n8ifJIcFnBHN6np9hnBGSs41kh2Ah04IXbHNVFzjlnL1uJ7sxzjDGjOdiJ3l89sE3Vrdo7i20jXtDvkahd_pLLxG0YLrgHWp9jMj2gDqPaDpFdQOtjahxaFqW5fChnUWT-7uHi6en_WSr1m2Eg_W7l7xcXT5PbtLb--tycnGbGipklwoqgVWYSlLRigoMIEEbbSupMS_ACIIZ8BzyOpOWQV0JmxtNpMyg4oAx3UuOxr4-do2KpunAvBvv3LCzIrwYUigGdDyiRfAfPcROzXwf3LCXyhiTNKOiEIM6GZUJw6EBarUIzVyHpSJYrXJVuVrnOtjT0a4m6q7x7gd_-vAL1cLW_-G_nb8B3i6Dhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449323878</pqid></control><display><type>article</type><title>Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, Yueqiang ; Paz-Soldan, C. ; Macusova, E. ; Markovic, T. ; Ficker, O. ; Parks, P. B. ; Kim, C. C. ; Lao, L. L. ; Li, L.</creator><creatorcontrib>Liu, Yueqiang ; Paz-Soldan, C. ; Macusova, E. ; Markovic, T. ; Ficker, O. ; Parks, P. B. ; Kim, C. C. ; Lao, L. L. ; Li, L.</creatorcontrib><description>The 3-D field induced relativistic runaway electron (RE) loss has been simulated for DIII-D and COMPASS plasmas, utilizing the MARS-F code incorporated with the recently developed and updated RE orbit module (REORBIT). Modeling shows effectively 100% loss of a post-disruption, high-current runaway beam in DIII-D due to the 1 kG level of magnetic field perturbation produced by a fast growing n = 1 resistive kink instability. This complete RE loss is shown to be independent of the particle energy or the initial location of particles in the configuration space. Applied resonant magnetic perturbation (RMP) fields from in-vessel coils are not effective for RE beam mitigation in DIII-D but do produce finite (>10%) RE loss in COMPASS post-disruption plasmas, consistent with experimental observations in the above two devices. The major reasons for this difference in RE control by RMP between these two devices are (i) the coil proximity to the RE beam and (ii) the effective coil current scaling vs the machine size and the toroidal magnetic field. In the modeling, the lost REs due to 3-D fields deposit onto the limiting surfaces of the devices. Distributions of the lost REs to the limiting surface show a poloidally peaked profile near the high-field-side in both DIII-D and COMPASS, covering about
100
° poloidal angle. A higher perturbation field level and/or higher particle energy also result in REs being lost to the low-field-side of the limiting surface of these two devices, increasing the effective wetted area.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0021154</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coils ; Constraining ; Devices ; Disruption ; Magnetic fields ; Modelling ; Particle energy ; Perturbation ; Plasma physics ; Plasmas (physics)</subject><ispartof>Physics of plasmas, 2020-10, Vol.27 (10)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-839e4b0391b3b380ee9eacadb9a067ec8104e65e5f29d4efb8d5ca1992eb6e003</citedby><cites>FETCH-LOGICAL-c389t-839e4b0391b3b380ee9eacadb9a067ec8104e65e5f29d4efb8d5ca1992eb6e003</cites><orcidid>0000-0003-1937-2675 ; 0000-0001-5539-1297 ; 0000-0002-8192-8411 ; 0000-0001-5069-4934 ; 0000-0002-0381-9244 ; 0000000203819244 ; 0000000281928411 ; 0000000319372675 ; 0000000150694934 ; 0000000155391297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0021154$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1671157$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yueqiang</creatorcontrib><creatorcontrib>Paz-Soldan, C.</creatorcontrib><creatorcontrib>Macusova, E.</creatorcontrib><creatorcontrib>Markovic, T.</creatorcontrib><creatorcontrib>Ficker, O.</creatorcontrib><creatorcontrib>Parks, P. B.</creatorcontrib><creatorcontrib>Kim, C. C.</creatorcontrib><creatorcontrib>Lao, L. L.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><title>Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS</title><title>Physics of plasmas</title><description>The 3-D field induced relativistic runaway electron (RE) loss has been simulated for DIII-D and COMPASS plasmas, utilizing the MARS-F code incorporated with the recently developed and updated RE orbit module (REORBIT). Modeling shows effectively 100% loss of a post-disruption, high-current runaway beam in DIII-D due to the 1 kG level of magnetic field perturbation produced by a fast growing n = 1 resistive kink instability. This complete RE loss is shown to be independent of the particle energy or the initial location of particles in the configuration space. Applied resonant magnetic perturbation (RMP) fields from in-vessel coils are not effective for RE beam mitigation in DIII-D but do produce finite (>10%) RE loss in COMPASS post-disruption plasmas, consistent with experimental observations in the above two devices. The major reasons for this difference in RE control by RMP between these two devices are (i) the coil proximity to the RE beam and (ii) the effective coil current scaling vs the machine size and the toroidal magnetic field. In the modeling, the lost REs due to 3-D fields deposit onto the limiting surfaces of the devices. Distributions of the lost REs to the limiting surface show a poloidally peaked profile near the high-field-side in both DIII-D and COMPASS, covering about
100
° poloidal angle. A higher perturbation field level and/or higher particle energy also result in REs being lost to the low-field-side of the limiting surface of these two devices, increasing the effective wetted area.</description><subject>Coils</subject><subject>Constraining</subject><subject>Devices</subject><subject>Disruption</subject><subject>Magnetic fields</subject><subject>Modelling</subject><subject>Particle energy</subject><subject>Perturbation</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAiCl4XvkHQlUI1adI0WcqMl4KieAF3IU1OtUMnGZNWmbe3QwddCK5yCB_n8ifJIcFnBHN6np9hnBGSs41kh2Ah04IXbHNVFzjlnL1uJ7sxzjDGjOdiJ3l89sE3Vrdo7i20jXtDvkahd_pLLxG0YLrgHWp9jMj2gDqPaDpFdQOtjahxaFqW5fChnUWT-7uHi6en_WSr1m2Eg_W7l7xcXT5PbtLb--tycnGbGipklwoqgVWYSlLRigoMIEEbbSupMS_ACIIZ8BzyOpOWQV0JmxtNpMyg4oAx3UuOxr4-do2KpunAvBvv3LCzIrwYUigGdDyiRfAfPcROzXwf3LCXyhiTNKOiEIM6GZUJw6EBarUIzVyHpSJYrXJVuVrnOtjT0a4m6q7x7gd_-vAL1cLW_-G_nb8B3i6Dhw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Liu, Yueqiang</creator><creator>Paz-Soldan, C.</creator><creator>Macusova, E.</creator><creator>Markovic, T.</creator><creator>Ficker, O.</creator><creator>Parks, P. B.</creator><creator>Kim, C. C.</creator><creator>Lao, L. L.</creator><creator>Li, L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1937-2675</orcidid><orcidid>https://orcid.org/0000-0001-5539-1297</orcidid><orcidid>https://orcid.org/0000-0002-8192-8411</orcidid><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000-0002-0381-9244</orcidid><orcidid>https://orcid.org/0000000203819244</orcidid><orcidid>https://orcid.org/0000000281928411</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid><orcidid>https://orcid.org/0000000155391297</orcidid></search><sort><creationdate>202010</creationdate><title>Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS</title><author>Liu, Yueqiang ; Paz-Soldan, C. ; Macusova, E. ; Markovic, T. ; Ficker, O. ; Parks, P. B. ; Kim, C. C. ; Lao, L. L. ; Li, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-839e4b0391b3b380ee9eacadb9a067ec8104e65e5f29d4efb8d5ca1992eb6e003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coils</topic><topic>Constraining</topic><topic>Devices</topic><topic>Disruption</topic><topic>Magnetic fields</topic><topic>Modelling</topic><topic>Particle energy</topic><topic>Perturbation</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yueqiang</creatorcontrib><creatorcontrib>Paz-Soldan, C.</creatorcontrib><creatorcontrib>Macusova, E.</creatorcontrib><creatorcontrib>Markovic, T.</creatorcontrib><creatorcontrib>Ficker, O.</creatorcontrib><creatorcontrib>Parks, P. B.</creatorcontrib><creatorcontrib>Kim, C. C.</creatorcontrib><creatorcontrib>Lao, L. L.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yueqiang</au><au>Paz-Soldan, C.</au><au>Macusova, E.</au><au>Markovic, T.</au><au>Ficker, O.</au><au>Parks, P. B.</au><au>Kim, C. C.</au><au>Lao, L. L.</au><au>Li, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS</atitle><jtitle>Physics of plasmas</jtitle><date>2020-10</date><risdate>2020</risdate><volume>27</volume><issue>10</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The 3-D field induced relativistic runaway electron (RE) loss has been simulated for DIII-D and COMPASS plasmas, utilizing the MARS-F code incorporated with the recently developed and updated RE orbit module (REORBIT). Modeling shows effectively 100% loss of a post-disruption, high-current runaway beam in DIII-D due to the 1 kG level of magnetic field perturbation produced by a fast growing n = 1 resistive kink instability. This complete RE loss is shown to be independent of the particle energy or the initial location of particles in the configuration space. Applied resonant magnetic perturbation (RMP) fields from in-vessel coils are not effective for RE beam mitigation in DIII-D but do produce finite (>10%) RE loss in COMPASS post-disruption plasmas, consistent with experimental observations in the above two devices. The major reasons for this difference in RE control by RMP between these two devices are (i) the coil proximity to the RE beam and (ii) the effective coil current scaling vs the machine size and the toroidal magnetic field. In the modeling, the lost REs due to 3-D fields deposit onto the limiting surfaces of the devices. Distributions of the lost REs to the limiting surface show a poloidally peaked profile near the high-field-side in both DIII-D and COMPASS, covering about
100
° poloidal angle. A higher perturbation field level and/or higher particle energy also result in REs being lost to the low-field-side of the limiting surface of these two devices, increasing the effective wetted area.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0021154</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1937-2675</orcidid><orcidid>https://orcid.org/0000-0001-5539-1297</orcidid><orcidid>https://orcid.org/0000-0002-8192-8411</orcidid><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000-0002-0381-9244</orcidid><orcidid>https://orcid.org/0000000203819244</orcidid><orcidid>https://orcid.org/0000000281928411</orcidid><orcidid>https://orcid.org/0000000319372675</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid><orcidid>https://orcid.org/0000000155391297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2020-10, Vol.27 (10) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1671157 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Coils Constraining Devices Disruption Magnetic fields Modelling Particle energy Perturbation Plasma physics Plasmas (physics) |
title | Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toroidal%20modeling%20of%20runaway%20electron%20loss%20due%20to%203-D%20fields%20in%20DIII-D%20and%20COMPASS&rft.jtitle=Physics%20of%20plasmas&rft.au=Liu,%20Yueqiang&rft.date=2020-10&rft.volume=27&rft.issue=10&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0021154&rft_dat=%3Cproquest_osti_%3E2449323878%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449323878&rft_id=info:pmid/&rfr_iscdi=true |