Nanoscale Mg–B via Surfactant Ball Milling of MgB2: Morphology, Composition, and Improved Hydrogen Storage Properties

Metal borides have attracted the attention of researchers due to their useful physical properties and unique ability to form high hydrogen-capacity metal borohydrides. We demonstrate improved hydrogen storage properties of a nanoscale Mg–B material made by surfactant ball milling MgB2 in a mixture o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-10, Vol.124 (39), p.21761-21771
Hauptverfasser: Liu, Y.-S, Ray, K. G, Jørgensen, M, Mattox, T. M, Cowgill, D. F, Eshelman, H. V, Sawvel, A. M, Snider, J. L, York, W, Wijeratne, P, Pham, A. L, Gunda, H, Li, S, Heo, T. W, Kang, S, Jensen, T. R, Stavila, V, Wood, B. C, Klebanoff, L. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21771
container_issue 39
container_start_page 21761
container_title Journal of physical chemistry. C
container_volume 124
creator Liu, Y.-S
Ray, K. G
Jørgensen, M
Mattox, T. M
Cowgill, D. F
Eshelman, H. V
Sawvel, A. M
Snider, J. L
York, W
Wijeratne, P
Pham, A. L
Gunda, H
Li, S
Heo, T. W
Kang, S
Jensen, T. R
Stavila, V
Wood, B. C
Klebanoff, L. E
description Metal borides have attracted the attention of researchers due to their useful physical properties and unique ability to form high hydrogen-capacity metal borohydrides. We demonstrate improved hydrogen storage properties of a nanoscale Mg–B material made by surfactant ball milling MgB2 in a mixture of heptane, oleic acid, and oleylamine. Transmission electron microscopy data show that Mg–B nanoplatelets are produced with sizes ranging from 5 to 50 nm, which agglomerate upon ethanol washing to produce an agglomerated nanoscale Mg–B material of micron-sized particles with some surfactant still remaining. X-ray diffraction measurements reveal a two-component material where 32% of the solid is a strained crystalline solid maintaining the hexagonal structure with the remainder being amorphous. Fourier transform infrared shows that the oleate binds in a “bridge-bonding” fashion preferentially to magnesium rather than boron, which is confirmed by density functional theory calculations. The Mg–B nanoscale material is deficient in boron relative to bulk MgB2 with a Mg–B ratio of ∼1:0.75. The nanoscale MgB0.75 material has a disrupted B–B ring network as indicated by X-ray absorption measurements. Hydrogenation experiments at 700 bar and 280 °C show that it partially hydrogenates at temperatures 100 °C below the threshold for bulk MgB2 hydrogenation. In addition, upon heating to 200 °C, the H–H bond-breaking ability increases ∼10-fold according to hydrogen–deuterium exchange experiments due to desorption of oleate at the surface. This behavior would make the nanoscale Mg–B material useful as an additive where rapid H–H bond breaking is needed.
doi_str_mv 10.1021/acs.jpcc.0c05142
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1670751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b515124920</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-64860019bdd3d31a27fb4aa79b32f1ffb27dbe5c6e0e2930e798e0aafe3661693</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhSdGExHdu5y4pjg_bYe6E6JCAmqCrpvb6UwZUmaazoBh5zv4hj6JVYire3Lz5eTkQ-iakiEljN6C9MN1I-WQSJLQmJ2gHs04i0ScJKf_ORbn6ML7NSEJJ5T30MczWOcl1Aovqu_PrzHeGcDLbatBBrABj6Gu8cLUtbEVdrqjxuwOL1zbrFztqv0AT9ymcd4E4-wAgy3xbNO0bqdKPN2XrauUxcvgWqgUfm1do9pglL9EZxpqr66Ot4_eHx_eJtNo_vI0m9zPI-BMhCiNRykhNCvKkpecAhO6iAFEVnCmqdYFE2WhEpkqoljGiRLZSBEArXia0jTjfXRz6HU-mNxLE5RcSWetkiGnqSAioR00OECdxHzttq3tJuWU5L9m879nZzY_muU_fPhvaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale Mg–B via Surfactant Ball Milling of MgB2: Morphology, Composition, and Improved Hydrogen Storage Properties</title><source>ACS Publications</source><creator>Liu, Y.-S ; Ray, K. G ; Jørgensen, M ; Mattox, T. M ; Cowgill, D. F ; Eshelman, H. V ; Sawvel, A. M ; Snider, J. L ; York, W ; Wijeratne, P ; Pham, A. L ; Gunda, H ; Li, S ; Heo, T. W ; Kang, S ; Jensen, T. R ; Stavila, V ; Wood, B. C ; Klebanoff, L. E</creator><creatorcontrib>Liu, Y.-S ; Ray, K. G ; Jørgensen, M ; Mattox, T. M ; Cowgill, D. F ; Eshelman, H. V ; Sawvel, A. M ; Snider, J. L ; York, W ; Wijeratne, P ; Pham, A. L ; Gunda, H ; Li, S ; Heo, T. W ; Kang, S ; Jensen, T. R ; Stavila, V ; Wood, B. C ; Klebanoff, L. E ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Metal borides have attracted the attention of researchers due to their useful physical properties and unique ability to form high hydrogen-capacity metal borohydrides. We demonstrate improved hydrogen storage properties of a nanoscale Mg–B material made by surfactant ball milling MgB2 in a mixture of heptane, oleic acid, and oleylamine. Transmission electron microscopy data show that Mg–B nanoplatelets are produced with sizes ranging from 5 to 50 nm, which agglomerate upon ethanol washing to produce an agglomerated nanoscale Mg–B material of micron-sized particles with some surfactant still remaining. X-ray diffraction measurements reveal a two-component material where 32% of the solid is a strained crystalline solid maintaining the hexagonal structure with the remainder being amorphous. Fourier transform infrared shows that the oleate binds in a “bridge-bonding” fashion preferentially to magnesium rather than boron, which is confirmed by density functional theory calculations. The Mg–B nanoscale material is deficient in boron relative to bulk MgB2 with a Mg–B ratio of ∼1:0.75. The nanoscale MgB0.75 material has a disrupted B–B ring network as indicated by X-ray absorption measurements. Hydrogenation experiments at 700 bar and 280 °C show that it partially hydrogenates at temperatures 100 °C below the threshold for bulk MgB2 hydrogenation. In addition, upon heating to 200 °C, the H–H bond-breaking ability increases ∼10-fold according to hydrogen–deuterium exchange experiments due to desorption of oleate at the surface. This behavior would make the nanoscale Mg–B material useful as an additive where rapid H–H bond breaking is needed.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c05142</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Processes in Nanomaterials and Nanostructures ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Journal of physical chemistry. C, 2020-10, Vol.124 (39), p.21761-21771</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2565-5906 ; 0000-0002-1085-1947 ; 0000-0002-1450-9719 ; 0000-0002-0765-3480 ; 0000-0003-0981-0432 ; 0000-0002-8810-807X ; 0000-0002-1598-831X ; 0000-0002-4278-3221 ; 000000028810807X ; 0000000242783221 ; 0000000225655906 ; 0000000207653480 ; 0000000214509719 ; 0000000210851947 ; 0000000309810432 ; 000000021598831X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c05142$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c05142$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1670751$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Y.-S</creatorcontrib><creatorcontrib>Ray, K. G</creatorcontrib><creatorcontrib>Jørgensen, M</creatorcontrib><creatorcontrib>Mattox, T. M</creatorcontrib><creatorcontrib>Cowgill, D. F</creatorcontrib><creatorcontrib>Eshelman, H. V</creatorcontrib><creatorcontrib>Sawvel, A. M</creatorcontrib><creatorcontrib>Snider, J. L</creatorcontrib><creatorcontrib>York, W</creatorcontrib><creatorcontrib>Wijeratne, P</creatorcontrib><creatorcontrib>Pham, A. L</creatorcontrib><creatorcontrib>Gunda, H</creatorcontrib><creatorcontrib>Li, S</creatorcontrib><creatorcontrib>Heo, T. W</creatorcontrib><creatorcontrib>Kang, S</creatorcontrib><creatorcontrib>Jensen, T. R</creatorcontrib><creatorcontrib>Stavila, V</creatorcontrib><creatorcontrib>Wood, B. C</creatorcontrib><creatorcontrib>Klebanoff, L. E</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Nanoscale Mg–B via Surfactant Ball Milling of MgB2: Morphology, Composition, and Improved Hydrogen Storage Properties</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Metal borides have attracted the attention of researchers due to their useful physical properties and unique ability to form high hydrogen-capacity metal borohydrides. We demonstrate improved hydrogen storage properties of a nanoscale Mg–B material made by surfactant ball milling MgB2 in a mixture of heptane, oleic acid, and oleylamine. Transmission electron microscopy data show that Mg–B nanoplatelets are produced with sizes ranging from 5 to 50 nm, which agglomerate upon ethanol washing to produce an agglomerated nanoscale Mg–B material of micron-sized particles with some surfactant still remaining. X-ray diffraction measurements reveal a two-component material where 32% of the solid is a strained crystalline solid maintaining the hexagonal structure with the remainder being amorphous. Fourier transform infrared shows that the oleate binds in a “bridge-bonding” fashion preferentially to magnesium rather than boron, which is confirmed by density functional theory calculations. The Mg–B nanoscale material is deficient in boron relative to bulk MgB2 with a Mg–B ratio of ∼1:0.75. The nanoscale MgB0.75 material has a disrupted B–B ring network as indicated by X-ray absorption measurements. Hydrogenation experiments at 700 bar and 280 °C show that it partially hydrogenates at temperatures 100 °C below the threshold for bulk MgB2 hydrogenation. In addition, upon heating to 200 °C, the H–H bond-breaking ability increases ∼10-fold according to hydrogen–deuterium exchange experiments due to desorption of oleate at the surface. This behavior would make the nanoscale Mg–B material useful as an additive where rapid H–H bond breaking is needed.</description><subject>C: Physical Processes in Nanomaterials and Nanostructures</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwkAUhSdGExHdu5y4pjg_bYe6E6JCAmqCrpvb6UwZUmaazoBh5zv4hj6JVYire3Lz5eTkQ-iakiEljN6C9MN1I-WQSJLQmJ2gHs04i0ScJKf_ORbn6ML7NSEJJ5T30MczWOcl1Aovqu_PrzHeGcDLbatBBrABj6Gu8cLUtbEVdrqjxuwOL1zbrFztqv0AT9ymcd4E4-wAgy3xbNO0bqdKPN2XrauUxcvgWqgUfm1do9pglL9EZxpqr66Ot4_eHx_eJtNo_vI0m9zPI-BMhCiNRykhNCvKkpecAhO6iAFEVnCmqdYFE2WhEpkqoljGiRLZSBEArXia0jTjfXRz6HU-mNxLE5RcSWetkiGnqSAioR00OECdxHzttq3tJuWU5L9m879nZzY_muU_fPhvaA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Liu, Y.-S</creator><creator>Ray, K. G</creator><creator>Jørgensen, M</creator><creator>Mattox, T. M</creator><creator>Cowgill, D. F</creator><creator>Eshelman, H. V</creator><creator>Sawvel, A. M</creator><creator>Snider, J. L</creator><creator>York, W</creator><creator>Wijeratne, P</creator><creator>Pham, A. L</creator><creator>Gunda, H</creator><creator>Li, S</creator><creator>Heo, T. W</creator><creator>Kang, S</creator><creator>Jensen, T. R</creator><creator>Stavila, V</creator><creator>Wood, B. C</creator><creator>Klebanoff, L. E</creator><general>American Chemical Society</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2565-5906</orcidid><orcidid>https://orcid.org/0000-0002-1085-1947</orcidid><orcidid>https://orcid.org/0000-0002-1450-9719</orcidid><orcidid>https://orcid.org/0000-0002-0765-3480</orcidid><orcidid>https://orcid.org/0000-0003-0981-0432</orcidid><orcidid>https://orcid.org/0000-0002-8810-807X</orcidid><orcidid>https://orcid.org/0000-0002-1598-831X</orcidid><orcidid>https://orcid.org/0000-0002-4278-3221</orcidid><orcidid>https://orcid.org/000000028810807X</orcidid><orcidid>https://orcid.org/0000000242783221</orcidid><orcidid>https://orcid.org/0000000225655906</orcidid><orcidid>https://orcid.org/0000000207653480</orcidid><orcidid>https://orcid.org/0000000214509719</orcidid><orcidid>https://orcid.org/0000000210851947</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid><orcidid>https://orcid.org/000000021598831X</orcidid></search><sort><creationdate>20201001</creationdate><title>Nanoscale Mg–B via Surfactant Ball Milling of MgB2: Morphology, Composition, and Improved Hydrogen Storage Properties</title><author>Liu, Y.-S ; Ray, K. G ; Jørgensen, M ; Mattox, T. M ; Cowgill, D. F ; Eshelman, H. V ; Sawvel, A. M ; Snider, J. L ; York, W ; Wijeratne, P ; Pham, A. L ; Gunda, H ; Li, S ; Heo, T. W ; Kang, S ; Jensen, T. R ; Stavila, V ; Wood, B. C ; Klebanoff, L. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-64860019bdd3d31a27fb4aa79b32f1ffb27dbe5c6e0e2930e798e0aafe3661693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Physical Processes in Nanomaterials and Nanostructures</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y.-S</creatorcontrib><creatorcontrib>Ray, K. G</creatorcontrib><creatorcontrib>Jørgensen, M</creatorcontrib><creatorcontrib>Mattox, T. M</creatorcontrib><creatorcontrib>Cowgill, D. F</creatorcontrib><creatorcontrib>Eshelman, H. V</creatorcontrib><creatorcontrib>Sawvel, A. M</creatorcontrib><creatorcontrib>Snider, J. L</creatorcontrib><creatorcontrib>York, W</creatorcontrib><creatorcontrib>Wijeratne, P</creatorcontrib><creatorcontrib>Pham, A. L</creatorcontrib><creatorcontrib>Gunda, H</creatorcontrib><creatorcontrib>Li, S</creatorcontrib><creatorcontrib>Heo, T. W</creatorcontrib><creatorcontrib>Kang, S</creatorcontrib><creatorcontrib>Jensen, T. R</creatorcontrib><creatorcontrib>Stavila, V</creatorcontrib><creatorcontrib>Wood, B. C</creatorcontrib><creatorcontrib>Klebanoff, L. E</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y.-S</au><au>Ray, K. G</au><au>Jørgensen, M</au><au>Mattox, T. M</au><au>Cowgill, D. F</au><au>Eshelman, H. V</au><au>Sawvel, A. M</au><au>Snider, J. L</au><au>York, W</au><au>Wijeratne, P</au><au>Pham, A. L</au><au>Gunda, H</au><au>Li, S</au><au>Heo, T. W</au><au>Kang, S</au><au>Jensen, T. R</au><au>Stavila, V</au><au>Wood, B. C</au><au>Klebanoff, L. E</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Mg–B via Surfactant Ball Milling of MgB2: Morphology, Composition, and Improved Hydrogen Storage Properties</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>124</volume><issue>39</issue><spage>21761</spage><epage>21771</epage><pages>21761-21771</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Metal borides have attracted the attention of researchers due to their useful physical properties and unique ability to form high hydrogen-capacity metal borohydrides. We demonstrate improved hydrogen storage properties of a nanoscale Mg–B material made by surfactant ball milling MgB2 in a mixture of heptane, oleic acid, and oleylamine. Transmission electron microscopy data show that Mg–B nanoplatelets are produced with sizes ranging from 5 to 50 nm, which agglomerate upon ethanol washing to produce an agglomerated nanoscale Mg–B material of micron-sized particles with some surfactant still remaining. X-ray diffraction measurements reveal a two-component material where 32% of the solid is a strained crystalline solid maintaining the hexagonal structure with the remainder being amorphous. Fourier transform infrared shows that the oleate binds in a “bridge-bonding” fashion preferentially to magnesium rather than boron, which is confirmed by density functional theory calculations. The Mg–B nanoscale material is deficient in boron relative to bulk MgB2 with a Mg–B ratio of ∼1:0.75. The nanoscale MgB0.75 material has a disrupted B–B ring network as indicated by X-ray absorption measurements. Hydrogenation experiments at 700 bar and 280 °C show that it partially hydrogenates at temperatures 100 °C below the threshold for bulk MgB2 hydrogenation. In addition, upon heating to 200 °C, the H–H bond-breaking ability increases ∼10-fold according to hydrogen–deuterium exchange experiments due to desorption of oleate at the surface. This behavior would make the nanoscale Mg–B material useful as an additive where rapid H–H bond breaking is needed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c05142</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2565-5906</orcidid><orcidid>https://orcid.org/0000-0002-1085-1947</orcidid><orcidid>https://orcid.org/0000-0002-1450-9719</orcidid><orcidid>https://orcid.org/0000-0002-0765-3480</orcidid><orcidid>https://orcid.org/0000-0003-0981-0432</orcidid><orcidid>https://orcid.org/0000-0002-8810-807X</orcidid><orcidid>https://orcid.org/0000-0002-1598-831X</orcidid><orcidid>https://orcid.org/0000-0002-4278-3221</orcidid><orcidid>https://orcid.org/000000028810807X</orcidid><orcidid>https://orcid.org/0000000242783221</orcidid><orcidid>https://orcid.org/0000000225655906</orcidid><orcidid>https://orcid.org/0000000207653480</orcidid><orcidid>https://orcid.org/0000000214509719</orcidid><orcidid>https://orcid.org/0000000210851947</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid><orcidid>https://orcid.org/000000021598831X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-10, Vol.124 (39), p.21761-21771
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1670751
source ACS Publications
subjects C: Physical Processes in Nanomaterials and Nanostructures
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Nanoscale Mg–B via Surfactant Ball Milling of MgB2: Morphology, Composition, and Improved Hydrogen Storage Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Mg%E2%80%93B%20via%20Surfactant%20Ball%20Milling%20of%20MgB2:%20Morphology,%20Composition,%20and%20Improved%20Hydrogen%20Storage%20Properties&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Liu,%20Y.-S&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2020-10-01&rft.volume=124&rft.issue=39&rft.spage=21761&rft.epage=21771&rft.pages=21761-21771&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c05142&rft_dat=%3Cacs_osti_%3Eb515124920%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true