Analysis of the performance of a hybrid CPU/GPU 1D2D coupled model for real flood cases
Coupled 1D2D models emerged as an efficient solution for a two-dimensional (2D) representation of the floodplain combined with a fast one-dimensional (1D) schematization of the main channel. At the same time, high-performance computing (HPC) has appeared as an efficient tool for model acceleration....
Gespeichert in:
Veröffentlicht in: | Journal of hydroinformatics 2020-09, Vol.22 (5), p.1198-1216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1216 |
---|---|
container_issue | 5 |
container_start_page | 1198 |
container_title | Journal of hydroinformatics |
container_volume | 22 |
creator | Echeverribar, Isabel Morales-Hernández, Mario Brufau, Pilar García-Navarro, Pilar |
description | Coupled 1D2D models emerged as an efficient solution for a two-dimensional (2D) representation of the floodplain combined with a fast one-dimensional (1D) schematization of the main channel. At the same time, high-performance computing (HPC) has appeared as an efficient tool for model acceleration. In this work, a previously validated 1D2D Central Processing Unit (CPU) model is combined with an HPC technique for fast and accurate flood simulation. Due to the speed of 1D schemes, a hybrid CPU/GPU model that runs the 1D main channel on CPU and accelerates the 2D floodplain with a Graphics Processing Unit (GPU) is presented. Since the data transfer between sub-domains and devices (CPU/GPU) may be the main potential drawback of this architecture, the test cases are selected to carry out a careful time analysis. The results reveal the speed-up dependency on the 2D mesh, the event to be solved and the 1D discretization of the main channel. Additionally, special attention must be paid to the time step size computation shared between sub-models. In spite of the use of a hybrid CPU/GPU implementation, high speed-ups are accomplished in some cases. |
doi_str_mv | 10.2166/hydro.2020.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1669740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483195288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f7a335134a0eabed098072e026b8f42b5be0162c88b323571cc6dea72f87d8033</originalsourceid><addsrcrecordid>eNotkM9LwzAYhoMoOKdXz0HP7fKrTXYcm05h4A4OjyFNvtKOrqlJd-h_b7t5-l4-Hl54H4SeKUkZzfNFNbjgU0YYSQlnN2hGRZ4lVHJxe8kikVTQe_QQ45EQRrmiM_Szak0zxDpiX-K-AtxBKH04mdbC9DK4GopQO7zeHxbb_QHTDdtg689dAw6fvIMGjzwOYMbQeO-wNRHiI7orTRPh6f_O0eH97Xv9key-tp_r1S6xnIs-KaXhPKNcGAKmAEeWikgGhOWFKgUrsgIIzZlVquCMZ5JamzswkpVKOkU4n6OXa6-Pfa2jrXuwlfVtC7bXo5WlFGSEXq9QF_zvGWKvj_4cxuFRM6E4XWZMqZFKr5QNPsYApe5CfTJh0JToybC-GNaTYT0a5n9cXmzZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483195288</pqid></control><display><type>article</type><title>Analysis of the performance of a hybrid CPU/GPU 1D2D coupled model for real flood cases</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Echeverribar, Isabel ; Morales-Hernández, Mario ; Brufau, Pilar ; García-Navarro, Pilar</creator><creatorcontrib>Echeverribar, Isabel ; Morales-Hernández, Mario ; Brufau, Pilar ; García-Navarro, Pilar ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Coupled 1D2D models emerged as an efficient solution for a two-dimensional (2D) representation of the floodplain combined with a fast one-dimensional (1D) schematization of the main channel. At the same time, high-performance computing (HPC) has appeared as an efficient tool for model acceleration. In this work, a previously validated 1D2D Central Processing Unit (CPU) model is combined with an HPC technique for fast and accurate flood simulation. Due to the speed of 1D schemes, a hybrid CPU/GPU model that runs the 1D main channel on CPU and accelerates the 2D floodplain with a Graphics Processing Unit (GPU) is presented. Since the data transfer between sub-domains and devices (CPU/GPU) may be the main potential drawback of this architecture, the test cases are selected to carry out a careful time analysis. The results reveal the speed-up dependency on the 2D mesh, the event to be solved and the 1D discretization of the main channel. Additionally, special attention must be paid to the time step size computation shared between sub-models. In spite of the use of a hybrid CPU/GPU implementation, high speed-ups are accomplished in some cases.</description><identifier>ISSN: 1464-7141</identifier><identifier>EISSN: 1465-1734</identifier><identifier>DOI: 10.2166/hydro.2020.032</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Acceleration ; Algorithms ; Central processing units ; Computation ; Coupled model ; CPUs ; Data transfer (computers) ; Efficiency ; Environmental impact ; ENVIRONMENTAL SCIENCES ; Finite element method ; flood ; Floodplains ; Floods ; Graphics ; Graphics processing units ; hybrid GPU ; Rivers ; shallow water ; Simulation ; Two dimensional models ; Velocity</subject><ispartof>Journal of hydroinformatics, 2020-09, Vol.22 (5), p.1198-1216</ispartof><rights>Copyright IWA Publishing Sep 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f7a335134a0eabed098072e026b8f42b5be0162c88b323571cc6dea72f87d8033</citedby><cites>FETCH-LOGICAL-c334t-f7a335134a0eabed098072e026b8f42b5be0162c88b323571cc6dea72f87d8033</cites><orcidid>0000000169617250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1669740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Echeverribar, Isabel</creatorcontrib><creatorcontrib>Morales-Hernández, Mario</creatorcontrib><creatorcontrib>Brufau, Pilar</creatorcontrib><creatorcontrib>García-Navarro, Pilar</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Analysis of the performance of a hybrid CPU/GPU 1D2D coupled model for real flood cases</title><title>Journal of hydroinformatics</title><description>Coupled 1D2D models emerged as an efficient solution for a two-dimensional (2D) representation of the floodplain combined with a fast one-dimensional (1D) schematization of the main channel. At the same time, high-performance computing (HPC) has appeared as an efficient tool for model acceleration. In this work, a previously validated 1D2D Central Processing Unit (CPU) model is combined with an HPC technique for fast and accurate flood simulation. Due to the speed of 1D schemes, a hybrid CPU/GPU model that runs the 1D main channel on CPU and accelerates the 2D floodplain with a Graphics Processing Unit (GPU) is presented. Since the data transfer between sub-domains and devices (CPU/GPU) may be the main potential drawback of this architecture, the test cases are selected to carry out a careful time analysis. The results reveal the speed-up dependency on the 2D mesh, the event to be solved and the 1D discretization of the main channel. Additionally, special attention must be paid to the time step size computation shared between sub-models. In spite of the use of a hybrid CPU/GPU implementation, high speed-ups are accomplished in some cases.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Central processing units</subject><subject>Computation</subject><subject>Coupled model</subject><subject>CPUs</subject><subject>Data transfer (computers)</subject><subject>Efficiency</subject><subject>Environmental impact</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Finite element method</subject><subject>flood</subject><subject>Floodplains</subject><subject>Floods</subject><subject>Graphics</subject><subject>Graphics processing units</subject><subject>hybrid GPU</subject><subject>Rivers</subject><subject>shallow water</subject><subject>Simulation</subject><subject>Two dimensional models</subject><subject>Velocity</subject><issn>1464-7141</issn><issn>1465-1734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkM9LwzAYhoMoOKdXz0HP7fKrTXYcm05h4A4OjyFNvtKOrqlJd-h_b7t5-l4-Hl54H4SeKUkZzfNFNbjgU0YYSQlnN2hGRZ4lVHJxe8kikVTQe_QQ45EQRrmiM_Szak0zxDpiX-K-AtxBKH04mdbC9DK4GopQO7zeHxbb_QHTDdtg689dAw6fvIMGjzwOYMbQeO-wNRHiI7orTRPh6f_O0eH97Xv9key-tp_r1S6xnIs-KaXhPKNcGAKmAEeWikgGhOWFKgUrsgIIzZlVquCMZ5JamzswkpVKOkU4n6OXa6-Pfa2jrXuwlfVtC7bXo5WlFGSEXq9QF_zvGWKvj_4cxuFRM6E4XWZMqZFKr5QNPsYApe5CfTJh0JToybC-GNaTYT0a5n9cXmzZ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Echeverribar, Isabel</creator><creator>Morales-Hernández, Mario</creator><creator>Brufau, Pilar</creator><creator>García-Navarro, Pilar</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000169617250</orcidid></search><sort><creationdate>20200901</creationdate><title>Analysis of the performance of a hybrid CPU/GPU 1D2D coupled model for real flood cases</title><author>Echeverribar, Isabel ; Morales-Hernández, Mario ; Brufau, Pilar ; García-Navarro, Pilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f7a335134a0eabed098072e026b8f42b5be0162c88b323571cc6dea72f87d8033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Central processing units</topic><topic>Computation</topic><topic>Coupled model</topic><topic>CPUs</topic><topic>Data transfer (computers)</topic><topic>Efficiency</topic><topic>Environmental impact</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Finite element method</topic><topic>flood</topic><topic>Floodplains</topic><topic>Floods</topic><topic>Graphics</topic><topic>Graphics processing units</topic><topic>hybrid GPU</topic><topic>Rivers</topic><topic>shallow water</topic><topic>Simulation</topic><topic>Two dimensional models</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echeverribar, Isabel</creatorcontrib><creatorcontrib>Morales-Hernández, Mario</creatorcontrib><creatorcontrib>Brufau, Pilar</creatorcontrib><creatorcontrib>García-Navarro, Pilar</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echeverribar, Isabel</au><au>Morales-Hernández, Mario</au><au>Brufau, Pilar</au><au>García-Navarro, Pilar</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the performance of a hybrid CPU/GPU 1D2D coupled model for real flood cases</atitle><jtitle>Journal of hydroinformatics</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>22</volume><issue>5</issue><spage>1198</spage><epage>1216</epage><pages>1198-1216</pages><issn>1464-7141</issn><eissn>1465-1734</eissn><abstract>Coupled 1D2D models emerged as an efficient solution for a two-dimensional (2D) representation of the floodplain combined with a fast one-dimensional (1D) schematization of the main channel. At the same time, high-performance computing (HPC) has appeared as an efficient tool for model acceleration. In this work, a previously validated 1D2D Central Processing Unit (CPU) model is combined with an HPC technique for fast and accurate flood simulation. Due to the speed of 1D schemes, a hybrid CPU/GPU model that runs the 1D main channel on CPU and accelerates the 2D floodplain with a Graphics Processing Unit (GPU) is presented. Since the data transfer between sub-domains and devices (CPU/GPU) may be the main potential drawback of this architecture, the test cases are selected to carry out a careful time analysis. The results reveal the speed-up dependency on the 2D mesh, the event to be solved and the 1D discretization of the main channel. Additionally, special attention must be paid to the time step size computation shared between sub-models. In spite of the use of a hybrid CPU/GPU implementation, high speed-ups are accomplished in some cases.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/hydro.2020.032</doi><tpages>19</tpages><orcidid>https://orcid.org/0000000169617250</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-7141 |
ispartof | Journal of hydroinformatics, 2020-09, Vol.22 (5), p.1198-1216 |
issn | 1464-7141 1465-1734 |
language | eng |
recordid | cdi_osti_scitechconnect_1669740 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acceleration Algorithms Central processing units Computation Coupled model CPUs Data transfer (computers) Efficiency Environmental impact ENVIRONMENTAL SCIENCES Finite element method flood Floodplains Floods Graphics Graphics processing units hybrid GPU Rivers shallow water Simulation Two dimensional models Velocity |
title | Analysis of the performance of a hybrid CPU/GPU 1D2D coupled model for real flood cases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20performance%20of%20a%20hybrid%20CPU/GPU%201D2D%20coupled%20model%20for%20real%20flood%20cases&rft.jtitle=Journal%20of%20hydroinformatics&rft.au=Echeverribar,%20Isabel&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-09-01&rft.volume=22&rft.issue=5&rft.spage=1198&rft.epage=1216&rft.pages=1198-1216&rft.issn=1464-7141&rft.eissn=1465-1734&rft_id=info:doi/10.2166/hydro.2020.032&rft_dat=%3Cproquest_osti_%3E2483195288%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483195288&rft_id=info:pmid/&rfr_iscdi=true |