Morphological and nanomechanical changes in tungsten in high heat flux conditions

Morphological and nanomechanical alteration of tungsten in extreme environments, like those in edge localized modes in nuclear fusion environments, up to 46.3 GWm −2 heat fluxes were experimentally simulated using electrothermal plasma. Surface and subsurface damage to the tungsten is seen mainly in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Npj Materials degradation 2020-10, Vol.4 (1), Article 30
Hauptverfasser: Seo, Minsuk, Echols, John R., Winfrey, A. Leigh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Npj Materials degradation
container_volume 4
creator Seo, Minsuk
Echols, John R.
Winfrey, A. Leigh
description Morphological and nanomechanical alteration of tungsten in extreme environments, like those in edge localized modes in nuclear fusion environments, up to 46.3 GWm −2 heat fluxes were experimentally simulated using electrothermal plasma. Surface and subsurface damage to the tungsten is seen mainly in the form of pore formation, cracks, and resolidified melt instabilities. Mirco voids, rosette-type microfeatures, core-shell structure, particle enrichment, and submicron channels all manifest in the damaged subsurface. The formation of voids in the subsurface was determined to originate from the ductile fracture of hot tungsten by plastic flow but not developed to cracking. The voids were preferentially settled in grain boundaries, interfaces. The directionality of elongated voids and grains is biased to the heat flow vector or plasma pathway, which is the likely consequence of the thermally driven grain growth and sliding in the high-temperature conditions. The presence of a border between the transient layer and heat-affected zone is observed and attributed to plasma shock and thermal spallation of fractural tungsten at high temperature. Plasma peening-like hardening effects in tungsten were observed in the range of 22.7–46.3 GWm −2 but least in the case of the lowest heat flux, 12.5 GWm −2 .
doi_str_mv 10.1038/s41529-020-00135-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1669716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449452179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-71732df28f60155d76302f1073057fe4b082aec72116489dbfd6ecd19712654d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYsoOIzzB1wVXVffS9KkXcrgFygi6Dp00qTNMJOMTQr6781MBV25yiWc-7icLDtHuEKg1XVgWJK6AAIFANKyYEfZjNBaFASBH__Jp9kihDUAEMIrrMkse332w673G99Z1WzyxrW5a5zfatU37vC1D50OuXV5HF0Xonb73Nuuz3vdxNxsxs9cedfaaL0LZ9mJaTZBL37eefZ-d_u2fCieXu4flzdPhaI1xEKgoKQ1pDIcsCxbwSkQgyAolMJotoKKNFoJgshZVbcr03KtWqwFEl6yls6zi-muD9HKoGxMm9MMp1WUyHkCeYIuJ2g3-I9RhyjXfhxc2iUJYzUrCYo6UWSi1OBDGLSRu8Fum-FLIsi9YjkplkmxPCiWLJXoVAoJToaG39P_tL4BzpR88w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449452179</pqid></control><display><type>article</type><title>Morphological and nanomechanical changes in tungsten in high heat flux conditions</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Seo, Minsuk ; Echols, John R. ; Winfrey, A. Leigh</creator><creatorcontrib>Seo, Minsuk ; Echols, John R. ; Winfrey, A. Leigh ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Morphological and nanomechanical alteration of tungsten in extreme environments, like those in edge localized modes in nuclear fusion environments, up to 46.3 GWm −2 heat fluxes were experimentally simulated using electrothermal plasma. Surface and subsurface damage to the tungsten is seen mainly in the form of pore formation, cracks, and resolidified melt instabilities. Mirco voids, rosette-type microfeatures, core-shell structure, particle enrichment, and submicron channels all manifest in the damaged subsurface. The formation of voids in the subsurface was determined to originate from the ductile fracture of hot tungsten by plastic flow but not developed to cracking. The voids were preferentially settled in grain boundaries, interfaces. The directionality of elongated voids and grains is biased to the heat flow vector or plasma pathway, which is the likely consequence of the thermally driven grain growth and sliding in the high-temperature conditions. The presence of a border between the transient layer and heat-affected zone is observed and attributed to plasma shock and thermal spallation of fractural tungsten at high temperature. Plasma peening-like hardening effects in tungsten were observed in the range of 22.7–46.3 GWm −2 but least in the case of the lowest heat flux, 12.5 GWm −2 .</description><identifier>ISSN: 2397-2106</identifier><identifier>EISSN: 2397-2106</identifier><identifier>DOI: 10.1038/s41529-020-00135-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/4077/4091 ; Chemistry and Materials Science ; Core-shell structure ; Corrosion and Coatings ; Cracking (fracturing) ; Damage ; Ductile fracture ; Electrochemistry ; Extreme environments ; Grain boundaries ; Grain growth ; Heat ; Heat affected zone ; Heat flux ; Heat transfer ; Heat transmission ; High temperature ; MATERIALS SCIENCE ; Melting ; Morphology ; Nuclear energy ; Nuclear fusion ; Plasma ; Plastic flow ; Pore formation ; Spallation ; Structural Materials ; Tribology ; Tungsten ; Voids</subject><ispartof>Npj Materials degradation, 2020-10, Vol.4 (1), Article 30</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-71732df28f60155d76302f1073057fe4b082aec72116489dbfd6ecd19712654d3</citedby><cites>FETCH-LOGICAL-c390t-71732df28f60155d76302f1073057fe4b082aec72116489dbfd6ecd19712654d3</cites><orcidid>0000-0002-7085-8163 ; 0000-0002-1725-6411 ; 0000000270858163 ; 0000000217256411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41529-020-00135-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41529-020-00135-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27923,27924,41119,42188,51575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1669716$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Minsuk</creatorcontrib><creatorcontrib>Echols, John R.</creatorcontrib><creatorcontrib>Winfrey, A. Leigh</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Morphological and nanomechanical changes in tungsten in high heat flux conditions</title><title>Npj Materials degradation</title><addtitle>npj Mater Degrad</addtitle><description>Morphological and nanomechanical alteration of tungsten in extreme environments, like those in edge localized modes in nuclear fusion environments, up to 46.3 GWm −2 heat fluxes were experimentally simulated using electrothermal plasma. Surface and subsurface damage to the tungsten is seen mainly in the form of pore formation, cracks, and resolidified melt instabilities. Mirco voids, rosette-type microfeatures, core-shell structure, particle enrichment, and submicron channels all manifest in the damaged subsurface. The formation of voids in the subsurface was determined to originate from the ductile fracture of hot tungsten by plastic flow but not developed to cracking. The voids were preferentially settled in grain boundaries, interfaces. The directionality of elongated voids and grains is biased to the heat flow vector or plasma pathway, which is the likely consequence of the thermally driven grain growth and sliding in the high-temperature conditions. The presence of a border between the transient layer and heat-affected zone is observed and attributed to plasma shock and thermal spallation of fractural tungsten at high temperature. Plasma peening-like hardening effects in tungsten were observed in the range of 22.7–46.3 GWm −2 but least in the case of the lowest heat flux, 12.5 GWm −2 .</description><subject>639/301</subject><subject>639/4077/4091</subject><subject>Chemistry and Materials Science</subject><subject>Core-shell structure</subject><subject>Corrosion and Coatings</subject><subject>Cracking (fracturing)</subject><subject>Damage</subject><subject>Ductile fracture</subject><subject>Electrochemistry</subject><subject>Extreme environments</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Heat</subject><subject>Heat affected zone</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>High temperature</subject><subject>MATERIALS SCIENCE</subject><subject>Melting</subject><subject>Morphology</subject><subject>Nuclear energy</subject><subject>Nuclear fusion</subject><subject>Plasma</subject><subject>Plastic flow</subject><subject>Pore formation</subject><subject>Spallation</subject><subject>Structural Materials</subject><subject>Tribology</subject><subject>Tungsten</subject><subject>Voids</subject><issn>2397-2106</issn><issn>2397-2106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAURYsoOIzzB1wVXVffS9KkXcrgFygi6Dp00qTNMJOMTQr6781MBV25yiWc-7icLDtHuEKg1XVgWJK6AAIFANKyYEfZjNBaFASBH__Jp9kihDUAEMIrrMkse332w673G99Z1WzyxrW5a5zfatU37vC1D50OuXV5HF0Xonb73Nuuz3vdxNxsxs9cedfaaL0LZ9mJaTZBL37eefZ-d_u2fCieXu4flzdPhaI1xEKgoKQ1pDIcsCxbwSkQgyAolMJotoKKNFoJgshZVbcr03KtWqwFEl6yls6zi-muD9HKoGxMm9MMp1WUyHkCeYIuJ2g3-I9RhyjXfhxc2iUJYzUrCYo6UWSi1OBDGLSRu8Fum-FLIsi9YjkplkmxPCiWLJXoVAoJToaG39P_tL4BzpR88w</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Seo, Minsuk</creator><creator>Echols, John R.</creator><creator>Winfrey, A. Leigh</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7085-8163</orcidid><orcidid>https://orcid.org/0000-0002-1725-6411</orcidid><orcidid>https://orcid.org/0000000270858163</orcidid><orcidid>https://orcid.org/0000000217256411</orcidid></search><sort><creationdate>20201002</creationdate><title>Morphological and nanomechanical changes in tungsten in high heat flux conditions</title><author>Seo, Minsuk ; Echols, John R. ; Winfrey, A. Leigh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-71732df28f60155d76302f1073057fe4b082aec72116489dbfd6ecd19712654d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301</topic><topic>639/4077/4091</topic><topic>Chemistry and Materials Science</topic><topic>Core-shell structure</topic><topic>Corrosion and Coatings</topic><topic>Cracking (fracturing)</topic><topic>Damage</topic><topic>Ductile fracture</topic><topic>Electrochemistry</topic><topic>Extreme environments</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Heat</topic><topic>Heat affected zone</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>High temperature</topic><topic>MATERIALS SCIENCE</topic><topic>Melting</topic><topic>Morphology</topic><topic>Nuclear energy</topic><topic>Nuclear fusion</topic><topic>Plasma</topic><topic>Plastic flow</topic><topic>Pore formation</topic><topic>Spallation</topic><topic>Structural Materials</topic><topic>Tribology</topic><topic>Tungsten</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Minsuk</creatorcontrib><creatorcontrib>Echols, John R.</creatorcontrib><creatorcontrib>Winfrey, A. Leigh</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV</collection><jtitle>Npj Materials degradation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Minsuk</au><au>Echols, John R.</au><au>Winfrey, A. Leigh</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological and nanomechanical changes in tungsten in high heat flux conditions</atitle><jtitle>Npj Materials degradation</jtitle><stitle>npj Mater Degrad</stitle><date>2020-10-02</date><risdate>2020</risdate><volume>4</volume><issue>1</issue><artnum>30</artnum><issn>2397-2106</issn><eissn>2397-2106</eissn><abstract>Morphological and nanomechanical alteration of tungsten in extreme environments, like those in edge localized modes in nuclear fusion environments, up to 46.3 GWm −2 heat fluxes were experimentally simulated using electrothermal plasma. Surface and subsurface damage to the tungsten is seen mainly in the form of pore formation, cracks, and resolidified melt instabilities. Mirco voids, rosette-type microfeatures, core-shell structure, particle enrichment, and submicron channels all manifest in the damaged subsurface. The formation of voids in the subsurface was determined to originate from the ductile fracture of hot tungsten by plastic flow but not developed to cracking. The voids were preferentially settled in grain boundaries, interfaces. The directionality of elongated voids and grains is biased to the heat flow vector or plasma pathway, which is the likely consequence of the thermally driven grain growth and sliding in the high-temperature conditions. The presence of a border between the transient layer and heat-affected zone is observed and attributed to plasma shock and thermal spallation of fractural tungsten at high temperature. Plasma peening-like hardening effects in tungsten were observed in the range of 22.7–46.3 GWm −2 but least in the case of the lowest heat flux, 12.5 GWm −2 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41529-020-00135-4</doi><orcidid>https://orcid.org/0000-0002-7085-8163</orcidid><orcidid>https://orcid.org/0000-0002-1725-6411</orcidid><orcidid>https://orcid.org/0000000270858163</orcidid><orcidid>https://orcid.org/0000000217256411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-2106
ispartof Npj Materials degradation, 2020-10, Vol.4 (1), Article 30
issn 2397-2106
2397-2106
language eng
recordid cdi_osti_scitechconnect_1669716
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals
subjects 639/301
639/4077/4091
Chemistry and Materials Science
Core-shell structure
Corrosion and Coatings
Cracking (fracturing)
Damage
Ductile fracture
Electrochemistry
Extreme environments
Grain boundaries
Grain growth
Heat
Heat affected zone
Heat flux
Heat transfer
Heat transmission
High temperature
MATERIALS SCIENCE
Melting
Morphology
Nuclear energy
Nuclear fusion
Plasma
Plastic flow
Pore formation
Spallation
Structural Materials
Tribology
Tungsten
Voids
title Morphological and nanomechanical changes in tungsten in high heat flux conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20and%20nanomechanical%20changes%20in%20tungsten%20in%20high%20heat%20flux%20conditions&rft.jtitle=Npj%20Materials%20degradation&rft.au=Seo,%20Minsuk&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-10-02&rft.volume=4&rft.issue=1&rft.artnum=30&rft.issn=2397-2106&rft.eissn=2397-2106&rft_id=info:doi/10.1038/s41529-020-00135-4&rft_dat=%3Cproquest_osti_%3E2449452179%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449452179&rft_id=info:pmid/&rfr_iscdi=true